Skip to main content

KDF Search Results

Displaying 1 - 6 of 6

The objective of this research project was to assess whether standard forestry best management practices (BMPs) are sufficient to protect stream water quality from intensive silviculture associated with short-rotation woody crop (SRWC) production for bioenergy. Forestry BMPs are designed to prevent the movement of deleterious quantities of nutrients, herbicides, sediments, and thermal energy (sunlight hitting stream channels) from clear-cuts and plantations to surface waters.

Organization:
DOE
Author(s):
Natalie A. Griffiths , C. Rhett Jackson , John I. Blake , Johnson Jeffers , Benjamin M. Rau , Gregory Starr , Kellie Vache
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The compatibility of plastic materials used in fuel storage and dispensing applications was determined for an off-highway diesel fuel
and a blend containing 20% bio-oil (Bio20) derived from a fast pyrolysis process. Bio20 is not to be confused with B20, which is a
diesel blend containing 20% biodiesel. The feedstock, processing, and chemistry of biodiesel are markedly different from bio-oil.
Plastic materials included those identified for use as seals, coatings, piping and fiberglass resins, but many are also used in vehicle

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The compatibility of plastic materials used in fuel storage and dispensing applications was determined for a test fuel representing
gasoline blended with 10% ethanol. Prior investigations were performed on gasoline fuels containing 25, 50 and 85% ethanol, but the
knowledge gap existing from 0 to 25% ethanol precluded accurate compatibility assessment of low level blends, especially for the
current E10 fuel (gasoline containing 10% ethanol) used in most filling stations, and the recently accepted E15 fuel blend (gasoline
blended with up to15% ethanol).

Author(s):
Michael Kass
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

For analyzing sustainability of algal biofuels, we identify 16 environmental indicators that fall into six categories: soil quality, water quality and quantity, air quality, greenhouse gas emissions, biodiversity, and productivity. Indicators are selected to be practical, widely applicable, predictable in response, anticipatory of future changes, independent of scale, and responsive to management.

Author(s):
R. A. Efroymson
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The compatibility of plastic materials used in fuel storage and dispensing applications was determined for test fuels representing gasoline blended with 25 vol.% ethanol and gasoline blended with 16 and 24 vol.% isobutanol. Plastic materials included those used in flexible plastic piping and fiberglass resins. Other commonly used plastic materials were also evaluated. The plastic specimens were exposed to Fuel C, CE25a, CiBu16a, and CiBu24a for 16 weeks at 60oC.

Author(s):
Michael Kass
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.