Skip to main content

KDF Search Results

Displaying 1 - 20 of 67

This spreadsheet serves as an Input file to the National Renewable Energy Laboratory's Waste-to-Energy System Simulation (WESyS) model developed in Stella Pro (isee systems, Lebanon, NH). WESyS is a national-level system dynamics model that simulates energy production from three sectors of the U.S. waste-to-energy industry: landfills, confined animal feeding operations (CAFOs), and publically owned treatment works (POTWs).

Author(s):
Daniel Inman, Annika Eberle, and Dylan Hettinger of the National Renewable Energy Laboratory; Steven Peterson and Corey Peck of Lexidyne, LLC.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This spreadsheet serves as an Input file to the National Renewable Energy Laboratory's Waste-to-Energy System Simulation (WESyS) model developed in Stella Pro (isee systems, Lebanon, NH). WESyS is a national-level system dynamics model that simulates energy production from three sectors of the U.S. waste-to-energy industry: landfills, confined animal feeding operations (CAFOs), and publically owned treatment works (POTWs).

Author(s):
Daniel Inman, Annika Eberle, and Dylan Hettinger of the National Renewable Energy Laboratory; Steven Peterson and Corey Peck of Lexidyne, LLC.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This spreadsheet serves as an Input file to the National Renewable Energy Laboratory's Waste-to-Energy System Simulation (WESyS) model developed in Stella Pro (isee systems, Lebanon, NH). WESyS is a national-level system dynamics model that simulates energy production from three sectors of the U.S. waste-to-energy industry: landfills, confined animal feeding operations (CAFOs), and publically owned treatment works (POTWs).

Author(s):
Daniel Inman, Annika Eberle, and Dylan Hettinger of the National Renewable Energy Laboratory; Steven Peterson and Corey Peck of Lexidyne, LLC.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This spreadsheet serves as an Input file to the National Renewable Energy Laboratory's Waste-to-Energy System Simulation (WESyS) model developed in Stella Pro (isee systems, Lebanon, NH). WESyS is a national-level system dynamics model that simulates energy production from three sectors of the U.S. waste-to-energy industry: landfills, confined animal feeding operations (CAFOs), and publically owned treatment works (POTWs).

Author(s):
Daniel Inman, Annika Eberle, and Dylan Hettinger of the National Renewable Energy Laboratory; Steven Peterson and Corey Peck of Lexidyne, LLC.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Waste to Energy System Simulation Model (WESyS) - Scenario Inputs and Supplemental Tableau Workbook
Daniel Inman, Ethan Warner, Anelia Milbrandt, Alberta Carpenter, Ling Tao, Emily Newes, and Steve Peterson (Lexidyne, LLC)

Author(s):
Daniel Inman, Ethan Warner, Anelia Milbrandt, Alberta Carpenter, Ling Tao, Emily Newes, and Steve Peterson (Lexidyne, LLC)
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The database summarizes a very broad set of old and new standing biomass data from plantation-grown hardwoods and softwoods established under a wide range of conditions across the United States and Canada. The WCYP database, together with this document, is being published to disseminate information on what is available in the literature with respect to yield evaluations and to inform people that not all yield data in the open literature are suitable for evaluation of “potential” regional yields.

Author(s):
Lynn Wright

This paper describes the current Biomass Scenario Model (BSM) as of August 2013, a system dynamics model developed under the support of the U.S. Department of Energy (DOE). The model is the result of a multi-year project at the National Renewable Energy Laboratory (NREL). It is a tool designed to better understand biofuels policy as it impacts the development of the supply chain for biofuels in the United States.

Author(s):
Peterson, Steve

A woody crop yield potential (WCYP) database was created containing yield results with as much associated information as was available concerning the sites, soils, and experimental treatments. The database summarizes a very broad set of old and new standing biomass data from plantation-grown hardwoods and softwoods established under a wide range of conditions across the United States and Canada.

Author(s):
Lynn Wright

Nationwide spatial dataset representing the polygon areas for first-generation suitability analysis of potentially suitable areas for microalgae open ponds. The PNNL microalgae growth model results for each site are included in the attribute table and assume growth based on theoretical limits. Sites represent a minimum mapping unit of 490 hectares. Land suitability included area less than or equal to 1% slope on non-agricultural, undeveloped or low‐density developed, nonsensitive, generally noncompetitive land was considered for microalgal culture facilities.

Microalgae are receiving increased global attention as a potential sustainable “energy crop”for biofuel production. An important step to realizing the potential of algae is quantifying the demands commercial‐scale algal biofuel production will place on water and land resources. We present a high‐resolution spatiotemporal assessment that brings to bear fundamental questions of where production can occur, how many land and water resources are required, and how much energy is produced.

Author(s):
Wigmosta, Mark

We quantify the emergence of biofuel markets and its impact on U.S. and world agriculture for the coming decade using the multi-market, multi-commodity international FAPRI (Food and Agricultural Policy Research Institute) model. The model incorporates the trade-offs between biofuel, feed, and food production and consumption and international feedback effects of the emergence through world commodity prices and trade.

Author(s):
Fabiosa,Jacinto F.

In this paper we investigate the potential production and implications of a global biofuels industry. We develop alternative approaches to the introduction of land as an economic factor input, in value and physical terms, into a computable general equilibrium framework. Both approach allows us to parameterize biomass production in a manner consistent with agro-engineering information on yields and a ?second generation? cellulosic biomass conversion technology.

Author(s):
Gurgel, Angelo

The preceding two chapters of this volume have discussed physical and economic data bases for global agriculture and forestry, respectively. These form the foundation for the integrated, global land use data base discussed in this chapter. However, in order to utilize these data for global CGE analysis, it is first necessary to integrate them into a global, general equilibrium data base. This integration is the subject of the present chapter

Author(s):
Huey-Lin Lee

Discussions of alternative fuel and propulsion technologies for transportation often overlook the infrastructure required to make these options practical and cost-effective. We estimate ethanol production facility locations and use a linear optimization model to consider the economic costs of distributing various ethanol fuel blends to all metropolitan areas in the United States. Fuel options include corn-based E5 (5% ethanol, 95% gasoline) to E16 from corn and switchgrass, as short-term substitutes for petroleum-based fuel.

Author(s):
William R. Morrow

This paper describes the GTAP land use data base designed to support integrated assessments of the potential for greenhouse gas mitigation. It disaggregates land use by agro-ecological zone (AEZ). To do so, it draws upon global land cover data bases, as well as state-of-the-art definition of AEZs from the FAO and IIASA. Agro-ecological zoning segments a parcel of land into smaller units according to agro-ecological characteristics, including: precipitation, temperature, soil type, terrain conditions, etc. Each zone has a similar combination of constraints and potential for land use.

Author(s):
Huey-Lin Lee

The paper describes the on-going project of the GTAP land use data base. We also present the GTAPE-AEZ model, which illustrates how land use and land-based emissions can be incorporated in the CGE framework for Integrated Assessment (IA) of climate change policies. We follow the FAO fashion of agro-ecological zoning (FAO, 2000; Fischer et al, 2002) to identify lands located in six zones. Lands located in a specific AEZ have similar (or homogenous) soil, landform and climatic characteristics.

Author(s):
Lee, Huey-Lin

The Census of Agriculture, taken every five years, is a complete count of U.S. farms and ranches and the people who operate them. The Census looks at land use and ownership, operator characteristics, production practices, income and expenditures. For America’s farmers and ranchers, the Census of Agriculture is their voice, their future and their responsibility.

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

ABSTRACT: A growing number of countries are implementing greenhouse gas (GHG) emissions trading schemes. As these schemes impose a cost for GHG emissions they should increase the competitiveness of low carbon fuels. Bioenergy from biomass is regarded as carbon neutral in most of the schemes, therefore incurring no emission costs. Emissions trading schemes may therefore encourage increased use of biomass for energy, and under certain conditions may also incentivize the construction of new bioenergy plants.