Skip to main content

KDF Search Results

Displaying 1 - 20 of 32

We propose a causal analysis framework to increase understanding of land-use change (LUC) and the reliability of LUC models. This health-sciences-inspired framework can be applied to determine probable causes of LUC in the context of bioenergy. Calculations of net greenhouse gas (GHG) emissions for LUC associated with biofuel production are critical in determining whether a fuel qualifies as a biofuel or advanced biofuel category under regional (EU), national (US, UK), and state (California) regulations.

Author(s):
Efroymson RA , Kline KL , Angelsen A , Verburg PH , Dale VH , Langeveld JWA , McBride A
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Nitrogen (N) is an important nutrient as it often limits productivity, but in excess can impair water quality. Most studies on watershed N cycling have occurred in upland forested catchments where snowmelt dominates N export; fewer studies have focused on low-relief watersheds that lack snow. We examined watershed N cycling in three adjacent, low-relief watersheds in the Upper Coastal Plain of the southeastern United States to better understand the role of hydrological flowpaths and biological transformations of N at the watershed scale.

Author(s):
Natalie A. Griffiths , C. Rhett Jackson , Jeffrey J. McDonnell , Julian Klaus , Enhao Du , Menberu M. Bitew
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The paper describes an approach to landscape design that focuses on integrating bioenergy production with their components of environmental, social and economic systems. Landscape design as used here refers to a spatially explicit, collaborative plan for management of landscapes and supply chains. Landscape design can involve multiple scales and build on existing practices to reduce costs or enhance services.

Author(s):
Virginia Dale , Keith Kline , Marilyn Buford , Timothy Volk , Tattersall Smith , Inge Stupak

Understanding how large-scale bioenergy production can affect biodiversity and ecosystems is important if society is to meet current and future sustainable development goals. A variety of bioenergy production systems have been established within different contexts throughout the Pan American region, with wide-ranging results in terms of documented and projected effects on biodiversity and ecosystems.

As with all land transformation activities, effects on biodiversity and ecosystem services of producing feedstocks for biofuels are highly variable and context specific.  Advances toward more sustainable biofuel production benefit from a system's perspective, recognizing spatial heterogeneity and scale, landscape-design principles, and addressing the influences of context such as the particular products and their distribution, policy background, stakeholder values, location, temporal influences, and baseline conditions.  Deploying biofuels in a manner to reduce effects on biodiversity

Author(s):
C.A. Joly
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The US Congress passed the Renewable Fuels Standard (RFS) seven years ago. Since then, biofuels have gone from darling to scapegoat for many environmentalists, policy makers, and the general public. The reasons for this shift are complex and include concerns about environmental degradation, uncertainties about impact on food security, new access to fossil fuels, and overly optimistic timetables. As a result, many people have written off biofuels.

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This paper describes the current Biomass Scenario Model (BSM) as of August 2013, a system dynamics model developed under the support of the U.S. Department of Energy (DOE). The model is the result of a multi-year project at the National Renewable Energy Laboratory (NREL). It is a tool designed to better understand biofuels policy as it impacts the development of the supply chain for biofuels in the United States.

Author(s):
Peterson, Steve

Indicators are needed to assess both socioeconomic and environmental sustainability of bioenergy systems. Effective indicators can help to identify and quantify the sustainability attributes of bioenergy options. We identify 16 socioeconomic indicators that fall into the categories of social well-being, energy security, trade, profitability, resource conservation, and social acceptability. The suite of indicators is predicated on the existence of basic institutional frameworks to provide governance, legal, regulatory and enforcement services.

Author(s):
Virginia H. Dale

United States is experiencing increasing interests in fermentation and anaerobic digestion processes for the production of biofuels. A simple methodology of spatial biomass assessment is presented in this paper to evaluate biofuel production and support the first decisions about the conversion technology applications. The methodology was applied to evaluate the potential biogas and ethanol production from biomass in California and Washington states. Solid waste databases were filtered to a short list of digestible and fermentable wastes in both states.

Author(s):
U. Zaher

The U.S. Department of Energy Biomass Program sponsored the Land-Use Change and Bioenergy workshop in Vonore, Tennessee, from May 11 to May 14, 2009. More than 50 experts from around the world gathered to review the state of the science, identify opportunities for collaboration, and prioritize next steps for the research and data needed to address key issues regarding the land-use effects of bioenergy policies. A key outcome of the workshop was the identification of research areas that may improve our understanding of land-use change in a bioenergy context.

Author(s):
Keith L. Kline

T. Searchinger et al. propose "Fixing a critical climate accounting error" (Policy Forum, 23 October 2009, p. 527). We agree that greenhouse gas (GHG) emission accounting needs to be more comprehensive, but believe that Searchinger's proposal would make matters worse by increasing the complexity and uncertainty of calculations. Solutions must be practical and verifiable to be effective.

Author(s):
Keith L. Kline

We present a system dynamics global LUC model intended to examine LUC attributed to biofuel production. The model has major global land system stocks and flows and can be exercised under different food and biofuel demand assumptions. This model provides insights into the drivers and dynamic interactions of LUC, population, dietary choices, and biofuel policy rather than a precise number generator.

The estimation of greenhouse gas (GHG) emissions from a change in land-use and management resulting from growing biofuel feedstocks has undergone extensive – and often contentious – scientific and policy debate. Emergent renewable fuel policies require life cycle GHG emission accounting that includes biofuel-induced global land-use change (LUC) GHG emissions. However, the science of LUC generally, and biofuels-induced LUC specifically, is nascent and underpinned with great uncertainty.

Increasing demand for crop-based biofuels, in addition to other human drivers of land use, induces direct and indirect land use changes (LUC). Our system dynamics tool is intended to complement existing LUC modeling approaches and to improve the understanding of global LUC drivers and dynamics by allowing examination of global LUC under diverse scenarios and varying model assumptions. We report on a small subset of such analyses.

This paper examines the impact of biofuel expansion on grain utilization and distribution at the state and cropping district level as most of grain producers and handlers are directly influenced by the local changes. We conducted a survey to understand the utilization and flows of corn, ethanol and its co-products, such as dried distillers grains (DDG) in Iowa. Results suggest that the rapidly expanding ethanol industry has a significant impact on corn utilization in Iowa.

Author(s):
Yu, Tun-Hsiang (Edward)

The purpose of this research was to determine whether indirect land use occurs and if so to what extent. Indirect land use is a change from non-cropland to cropland (e.g. deforestation) that may occur in response to increasing scarcity of cropland. As farmers worldwide respond to higher crop prices in order to maintain the global food supply and demand balance, pristine lands are cleared and converted to new cropland to replace the crops for feed and food that were diverted elsewhere to biofuels production.

Author(s):
Sobowale, Folakemi