Skip to main content

KDF Search Results

Displaying 1 - 20 of 24

We propose a causal analysis framework to increase understanding of land-use change (LUC) and the reliability of LUC models. This health-sciences-inspired framework can be applied to determine probable causes of LUC in the context of bioenergy. Calculations of net greenhouse gas (GHG) emissions for LUC associated with biofuel production are critical in determining whether a fuel qualifies as a biofuel or advanced biofuel category under regional (EU), national (US, UK), and state (California) regulations.

Author(s):
Efroymson RA , Kline KL , Angelsen A , Verburg PH , Dale VH , Langeveld JWA , McBride A
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This paper describes the current Biomass Scenario Model (BSM) as of August 2013, a system dynamics model developed under the support of the U.S. Department of Energy (DOE). The model is the result of a multi-year project at the National Renewable Energy Laboratory (NREL). It is a tool designed to better understand biofuels policy as it impacts the development of the supply chain for biofuels in the United States.

Author(s):
Peterson, Steve

Indicators are needed to assess both socioeconomic and environmental sustainability of bioenergy systems. Effective indicators can help to identify and quantify the sustainability attributes of bioenergy options. We identify 16 socioeconomic indicators that fall into the categories of social well-being, energy security, trade, profitability, resource conservation, and social acceptability. The suite of indicators is predicated on the existence of basic institutional frameworks to provide governance, legal, regulatory and enforcement services.

Author(s):
Virginia H. Dale

Biofuels are promoted in the United States through aggressive legislation, as one part of an overall strategy to lessen dependence on imported energy as well as to reduce the emissions of greenhouse gases (Office of the Biomass Program and Energy Efficiency and Renewable Energy, 2008). For example, the Energy Independence and Security Act of 2007 (EISA) mandates 36 billion gallons of renewable liquid transportation fuel in the U.S. marketplace by the year 2022 (U.S. Government, 2007).

Author(s):
Emily Newes, Daniel Inman, Brian Bush

United States is experiencing increasing interests in fermentation and anaerobic digestion processes for the production of biofuels. A simple methodology of spatial biomass assessment is presented in this paper to evaluate biofuel production and support the first decisions about the conversion technology applications. The methodology was applied to evaluate the potential biogas and ethanol production from biomass in California and Washington states. Solid waste databases were filtered to a short list of digestible and fermentable wastes in both states.

Author(s):
U. Zaher

The U.S. Department of Energy Biomass Program sponsored the Land-Use Change and Bioenergy workshop in Vonore, Tennessee, from May 11 to May 14, 2009. More than 50 experts from around the world gathered to review the state of the science, identify opportunities for collaboration, and prioritize next steps for the research and data needed to address key issues regarding the land-use effects of bioenergy policies. A key outcome of the workshop was the identification of research areas that may improve our understanding of land-use change in a bioenergy context.

Author(s):
Keith L. Kline

We present a system dynamics global LUC model intended to examine LUC attributed to biofuel production. The model has major global land system stocks and flows and can be exercised under different food and biofuel demand assumptions. This model provides insights into the drivers and dynamic interactions of LUC, population, dietary choices, and biofuel policy rather than a precise number generator.

The estimation of greenhouse gas (GHG) emissions from a change in land-use and management resulting from growing biofuel feedstocks has undergone extensive – and often contentious – scientific and policy debate. Emergent renewable fuel policies require life cycle GHG emission accounting that includes biofuel-induced global land-use change (LUC) GHG emissions. However, the science of LUC generally, and biofuels-induced LUC specifically, is nascent and underpinned with great uncertainty.

Increasing demand for crop-based biofuels, in addition to other human drivers of land use, induces direct and indirect land use changes (LUC). Our system dynamics tool is intended to complement existing LUC modeling approaches and to improve the understanding of global LUC drivers and dynamics by allowing examination of global LUC under diverse scenarios and varying model assumptions. We report on a small subset of such analyses.

This paper examines the impact of biofuel expansion on grain utilization and distribution at the state and cropping district level as most of grain producers and handlers are directly influenced by the local changes. We conducted a survey to understand the utilization and flows of corn, ethanol and its co-products, such as dried distillers grains (DDG) in Iowa. Results suggest that the rapidly expanding ethanol industry has a significant impact on corn utilization in Iowa.

Author(s):
Yu, Tun-Hsiang (Edward)

The purpose of this research was to determine whether indirect land use occurs and if so to what extent. Indirect land use is a change from non-cropland to cropland (e.g. deforestation) that may occur in response to increasing scarcity of cropland. As farmers worldwide respond to higher crop prices in order to maintain the global food supply and demand balance, pristine lands are cleared and converted to new cropland to replace the crops for feed and food that were diverted elsewhere to biofuels production.

Author(s):
Sobowale, Folakemi

Understanding the Growth of the Cellulosic Ethanol Industry, D. Sandor and R. Wallace, National Renewable Energy Laboratory, S. Peterson The Peterson Group, Technical Report, NREL/TP-150-42120 April 2008

Author(s):
D. Sandor and R. Wallace National Renewable Energy Laboratory, S. Peterson The Peterson Group

The National Renewable Energy Laboratory (NREL) originally developed this application for biopower with funding from the Environmental Protection Agency's Blue Skyways Collaborative. The Department of Energy's Office of Biomass Program provided funding for biofuels functionality. More information on funding agencies is available: http://www.blueskyways.org and http://www.eere.energy.gov/biomass/.

Transgenic modification of plants is a key enabling technology for developing sustainable biofeedstocks for biofuels production. Regulatory decisions and the wider acceptance and development of transgenic biofeedstock crops are considered from the context of science-based risk assessment. The risk assessment paradigm for transgenic biofeedstock crops is fundamentally no different from that of current generation transgenic crops, except that the focus of the assessment must consider the unique attributes of a given biofeedstock crop and its environmental release.

Author(s):
Wolt, Jeffrey D.

Soaring global food prices are threatening to push more poor people back below the poverty line; this will probably become aggravated by the serious challenge that increasing population and climate changes are posing for food security. There is growing evidence that human activities involving fossil fuel consumption and land use are contributing to greenhouse gas emissions and consequently changing the climate worldwide. The finite nature of fossil fuel reserves is causing concern about energy security and there is a growing interest in the use of renewable energy sources such as biofuels.

Author(s):
Acosta, O.

This paper describes a preliminary analysis of two technological routes (based on hydrolysis and on gasification + Fischer–Tropsch conversion process) of biofuels production from cellulosic materials. In this paper it was considered the integration of the two alternative routes to a conventional distillery of ethanol production based on fermentation of sugarcane juice. Sugarcane bagasse is the biomass considered as input in both second-generation routes.

Author(s):
Arnaldo Walter

Prior studies have estimated that a liter of bioethanol requires 263−784 L of water from corn farm to fuel pump, but these estimates have failed to account for the widely varied regional irrigation practices. By using regional time-series agricultural and ethanol production data in the U.S., this paper estimates the state-level field-to-pump water requirement of bioethanol across the nation. The results indicate that bioethanol’s water requirements can range from 5 to 2138 L per liter of ethanol depending on regional irrigation practices.

Author(s):
Yi-Wen Chiu