Skip to main content

KDF Search Results

Displaying 1 - 14 of 14

For analyzing sustainability of algal biofuels, we identify 16 environmental indicators that fall into six categories: soil quality, water quality and quantity, air quality, greenhouse gas emissions, biodiversity, and productivity. Indicators are selected to be practical, widely applicable, predictable in response, anticipatory of future changes, independent of scale, and responsive to management.

Author(s):
R. A. Efroymson
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

National interests in greater energy independence, concurrent with favorable market forces, have driven increased production of corn-based ethanol in the United States and research into the next generation of biofuels. The trend is changing the national agricultural landscape and has raised concerns about potential impacts on the nation?s water resources. This report examines some of the key issues and identifies opportunities for shaping policies that help to protect water resources.

Author(s):
Schnoor, Jerald

This report discusses the development of greenhouse gas (GHG) emissions estimates for the production of Fischer-Tropsch (FT) derived fuels (in particular, FT diesel), makes comparisons of these estimates to reported literature values for petroleum-derived diesel, and outlines strategies for substantially reducing these emissions.

Author(s):
Marano, John J.

Despite a rapid worldwide expansion of the biofuel industry, there is a lack of consensus within the scientific community about the potential of biofuels to reduce reliance on petroleum and decrease greenhouse gas (GHG) emissions. Although life cycle assessment provides a means to quantify these potential benefits and environmental impacts, existing methods limit direct comparison within and between different biofuel systems because of inconsistencies in performance metrics, system boundaries, and underlying parameter values.

Traffic flows in the U.S. have been affected by the substantial increase and, as of January 2009, decrease in biofuel production and use. This paper considers a framework to study the effect on grain transportation flows of the 2005 Energy Act and subsequent legislation, which mandated higher production levels of biofuels, e.g. ethanol and biodiesels. Future research will incorporate changes due to the recent economic slowdown.

Author(s):
Ahmedov, Zarabek

The Energy Independence and Security Act (EISA) of 2007 established specific targets for the production of biofuel in the United States. Until advanced technologies become commercially viable, meeting these targets will increase demand for traditional agricultural commodities used to produce ethanol, resulting in land-use, production, and price changes throughout the farm sector. This report summarizes the estimated effects of meeting the EISA targets for 2015 on regional agricultural production and the environment. Meeting EISA targets for ethanol production is estimated to expand U.S.

Author(s):
Malcolm, Scott A.

We assessed current water consumption during liquid fuel production, evaluating major steps of fuel lifecycle for five fuel pathways: bioethanol from corn, bioethanol from cellulosic feedstocks, gasoline from U.S. conventional crude obtained from onshore wells, gasoline from Saudi Arabian crude, and gasoline from Canadian oil sands.

The US is currently the world's largest ethanol producer. An increasing percentage is used as transportation fuel, but debates continue on its costs competitiveness and energy balance. In this study, technological development of ethanol production and resulting cost reductions are investigated by using the experience curve approach, scrutinizing costs of dry grind ethanol production over the timeframe 1980–2005. Cost reductions are differentiated between feedstock (corn) production and industrial (ethanol) processing.

Author(s):
W.G. Hettinga

A dry-grind ethanol from corn process analysis is performed. After defining a complete model of the process, a pinch technology analysis is carried out to optimise energy and water demands. The so-defined base case is then discussed in terms of production costs and process profitability. A detailed sensitivity analysis on the most important process and financial variables is carried out. The possibility to adopt different alternatives for heat and power generation combined to the process is evaluated.

Author(s):
Giada Franceschin

Production costs of bio-ethanol from sugarcane in Brazil have declined continuously over the last three decades. The aims of this study are to determine underlying reasons behind these cost reductions, and to assess whether the experience curve concept can be used to describe the development of feedstock costs and industrial production costs. The analysis was performed using average national costs data, a number of prices (as a proxy for production costs) and data on annual Brazilian production volumes.

Author(s):
J.D. van den Wall Bake

The important key technologies required for the successful biological conversion of lignocellulosic biomass to ethanol have been extensively reviewed. The biological process of ethanol fuel production utilizing lignocellulose as substrate requires: (1) delignification to liberate cellulose and hemicellulose from their complex with lignin, (2) depolymerization of the carbohydrate polymers (cellulose and hemicellulose) to produce free sugars, and (3) fermentation of mixed hexose and pentose sugars to produce ethanol.

Author(s):
Jeewon Lee

Prior studies have estimated that a liter of bioethanol requires 263−784 L of water from corn farm to fuel pump, but these estimates have failed to account for the widely varied regional irrigation practices. By using regional time-series agricultural and ethanol production data in the U.S., this paper estimates the state-level field-to-pump water requirement of bioethanol across the nation. The results indicate that bioethanol’s water requirements can range from 5 to 2138 L per liter of ethanol depending on regional irrigation practices.

Author(s):
Yi-Wen Chiu

Ethanol production using corn grain has exploded in the Upper Midwest. This new demand for corn, and the new opportunities
for value-added processing and cattle production in rural communities, has created the best economic development
opportunity in the Corn Belt states in a generation or more. Ethanol demand has increased rapidly recently because of favorable
economics of ethanol vs. gasoline, and the need for a performance enhancer to replace MTBE (methyl tertiary-butyl ether)

Author(s):
Dennis Keeney