Skip to main content

KDF Search Results

Displaying 1 - 13 of 13

This paper describes the current Biomass Scenario Model (BSM) as of August 2013, a system dynamics model developed under the support of the U.S. Department of Energy (DOE). The model is the result of a multi-year project at the National Renewable Energy Laboratory (NREL). It is a tool designed to better understand biofuels policy as it impacts the development of the supply chain for biofuels in the United States.

Author(s):
Peterson, Steve

This report discusses the development of greenhouse gas (GHG) emissions estimates for the production of Fischer-Tropsch (FT) derived fuels (in particular, FT diesel), makes comparisons of these estimates to reported literature values for petroleum-derived diesel, and outlines strategies for substantially reducing these emissions.

Author(s):
Marano, John J.

Biodiesel is a renewable diesel fuel substitute that can be made by chemically combining any natural oil or fat with an alcohol such as methanol or ethanol. Methanol has been the most commonly used alcohol in the commercial production of biodiesel. In Europe, biodiesel is widely available in both its neat form (100% biodiesel, also known as B100) and in blends with petroleum diesel. Most European biodiesel is made from rapeseed oil (a cousin of canola oil).

Author(s):
Sheehan, John

EXECUTIVE SUMMARY: Life cycle assessment (LCA) is a powerful tool that may be used to quantify the environmental impacts of products and services. It includes all processes, from cradle-to-grave, along the supply chain of the product. When analysing energy systems, greenhouse gas (GHG) emissions (primarily CO2, CH4 and N2O) are the impact of primary concern. In using LCA to determine the climate change mitigation benefits of bioenergy, the life cycle emissions of the bioenergy system are compared with the emissions for a reference energy system.

Despite a rapid worldwide expansion of the biofuel industry, there is a lack of consensus within the scientific community about the potential of biofuels to reduce reliance on petroleum and decrease greenhouse gas (GHG) emissions. Although life cycle assessment provides a means to quantify these potential benefits and environmental impacts, existing methods limit direct comparison within and between different biofuel systems because of inconsistencies in performance metrics, system boundaries, and underlying parameter values.

The IPCC SRREN report addresses information needs of policymakers, the private sector and civil society on the potential of renewable energy sources for the mitigation of climate change, providing a comprehensive assessment of renewable energy technologies and related policy and financial instruments. The IPCC report was a multinational collaboration and synthesis of peer reviewed information: Reviewed, analyzed, coordinated, and integrated current high quality information.

Traffic flows in the U.S. have been affected by the substantial increase and, as of January 2009, decrease in biofuel production and use. This paper considers a framework to study the effect on grain transportation flows of the 2005 Energy Act and subsequent legislation, which mandated higher production levels of biofuels, e.g. ethanol and biodiesels. Future research will incorporate changes due to the recent economic slowdown.

Author(s):
Ahmedov, Zarabek

We assessed the life-cycle energy and greenhouse gas (GHG) emission impacts of the following three soybean-derived fuels by expanding, updating, and using Argonne National Laboratory’s Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model: (1) biodiesel produced from soy oil transesterification, (2) renewable diesel produced from hydrogenation of soy oil by using two processes (renewable diesel I and II), and (3) renewable gasoline produced from catalytic cracking of soy oil.

There is a strong societal need to evaluate and understand the sustainability of biofuels, especially because of the significant increases in production mandated by many countries, including the United States. Sustainability will be a strong factor in the regulatory environment and investments in biofuels. Biomass feedstock production is an important contributor to environmental, social, and economic impacts from biofuels.

Author(s):
Gayathri Gopalakrishnan

The United States shares with many other countries the goal of the United Nations Framework Convention on Climate Change “to achieve . . . stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system.”1 The critical role of new technologies in achieving this goal is underscored by the fact that most anthropogenic greenhouse gases (GHGs) emitted over the next century will come from equipment and infrastructure that has not yet been built.

Author(s):
Marilyn A. Brown

The model is a vehicle fuel-cycle model for transportation systems. The model provides a set of outcomes that would involve feedstock production, biorefinery production, storage and consumer demand as the complete fuel-cycle. The data is internal to the model, but might be adaptive to different biofuels specifications. This model was developed by the Energy Systems Division at Argonne National Laboratory.

Author(s):
Michael Wang
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.