Skip to main content

KDF Search Results

Displaying 1 - 20 of 21

This report provides a status of the markets and technology development involved in growing a domestic bioenergy economy as it existed at the end of calendar year 2013. It compiles and integrates information to provide a snapshot of the current state and historical trends influencing the development of bioenergy markets. This information is intended for policy-makers as well as technology developers and investors tracking bioenergy developments. It also highlights some of the key energy and regulatory drivers of bioenergy markets.

Author(s):
U.S. Department of Energy
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

A global energy crop productivity model that provides geospatially explicit quantitative details on biomass
potential and factors affecting sustainability would be useful, but does not exist now. This study describes a
modeling platform capable of meeting many challenges associated with global-scale agro-ecosystem modeling.
We designed an analytical framework for bioenergy crops consisting of six major components: (i) standardized
natural resources datasets, (ii) global field-trial data and crop management practices, (iii) simulation units and

Author(s):
SHUJIANG KANG
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability.

Author(s):
Robert Boundy , Susan W. Diegel , Lynn Wright , Stacy C. Davis
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Biomass is a significant contributor to the US economy--agriculture, forest and paper products, food and related products account for 5% of our GDP. While the forest products industry self generates some of their energy, other sectors are importers. Bioenergy can contribute to economic development and to the environment. Examples of bioenergy routes suggest that atmospheric carbon can be cycled through biofuels in carefully designed systems for sustainability. Significant potential exists for these options.

Author(s):
Costello, Raymond

We present a system dynamics global LUC model intended to examine LUC attributed to biofuel production. The model has major global land system stocks and flows and can be exercised under different food and biofuel demand assumptions. This model provides insights into the drivers and dynamic interactions of LUC, population, dietary choices, and biofuel policy rather than a precise number generator.

The IPCC SRREN report addresses information needs of policymakers, the private sector and civil society on the potential of renewable energy sources for the mitigation of climate change, providing a comprehensive assessment of renewable energy technologies and related policy and financial instruments. The IPCC report was a multinational collaboration and synthesis of peer reviewed information: Reviewed, analyzed, coordinated, and integrated current high quality information.

The U.S. Department of Energy (DOE) is promoting the development of ethanol from lignocellulosic feedstocks as an alternative to conventional petroleum-based transportation fuels. DOE funds both fundamental and applied research in this area and needs a method for predicting cost benefits of many research proposals. To that end, the National Renewable Energy Laboratory (NREL) has modeled many potential process designs and estimated the economics of each process during the last 20 years. This report is an update of the ongoing process design and economic analyses at NREL.

Author(s):
Aden, A.

This paper examines the possibilities of breaking into the cellulosic ethanol market in south Louisiana via strategic feedstock choices and the leveraging of the area’s competitive advantages. A small plant strategy is devised whereby the first-mover problem might be solved, and several scenarios are tested using Net Present Value analysis.

Author(s):
Darby, Paul

PEATSim (Partial Equilibrium Agricultural Trade Simulation) is a dynamic, partial equilibrium, mathematical-based model that enables users to reach analytical solutions to problems, given a set of parameters, data, and initial
conditions. This theoretical tool developed by ERS incorporates a wide range of domestic and border policies that enables it to estimate the market and trade effects of policy changes on agricultural markets. PEATSim captures

Author(s):
USDA Economic Research Service

Agricultural markets often feature significant transport costs and spatially distributed production and processing which causes spatial imperfect competition. Spatial economics considers the firms’ decisions regarding location and spatial price strategy separately, usually on the demand side, and under restrictive assumptions. Therefore, alternative approaches are needed to explain, e.g., the location of new ethanol plants in the U.S. at peripheral as well as at central locations and the observation of different spatial price strategies in the market.

Author(s):
Graubner, Marten

This paper introduces a spatial bioeconomic model for study of potential cellulosic biomass supply at regional scale. By modeling the profitability of alternative crop production practices, it captures the opportunity cost of replacing current crops by cellulosic biomass crops. The model draws upon biophysical crop input-output coefficients, price and cost data, and spatial transportation costs in the context of profit maximization theory. Yields are simulated using temperature, precipitation and soil quality data with various commercial crops and potential new cellulosic biomass crops.

Author(s):
Egbendewe-Mondzozo, Aklesso

Events external to agriculture have set in motion the conditions for structural change in the marketing of corn in the U.S. These included a rapid increase in the price of crude oil from $40 per barrel to over $100 caused by hurricanes, geopolitical events, an increased global demand for energy from countries like China and India, and in December 2007, the U.S. raising the renewable fuel standards. The results of this research show that there could be significant changes in the historical utilization and marketing of corn in the U.S.

Author(s):
Conley, Dennis M.

When the lignocellulosic biofuels industry reaches maturity and many types of biomass sources become economically viable, management of multiple feedstock supplies – that vary in their yields, density (tons per unit area), harvest window, storage and seasonal costs, storage losses, transport distance to the production plant – will become increasingly important for the success of individual enterprises. The manager’s feedstock procurement problem is modeled as a multi-period sequence problem to account for dynamic management over time.

Author(s):
Kumarappan, Subbu

In this study we use data envelopment analysis to decompose the overall economic efficiency of a sample of ethanol plants into three subcomponents: technical efficiency, allocative efficiency and a new component we call marketing efficiency. The relative importance of these sources of efficiency is of particular interest given the recent history of bankruptcies, plant closings and ownership change in the industry. Results reveal that observed production units are very efficient from a technical point of view as suggested by a standard deviation of 1% in technical efficiency.

Author(s):
Sesmero, Juan P.

The National Renewable Energy Laboratory (NREL) originally developed this application for biopower with funding from the Environmental Protection Agency's Blue Skyways Collaborative. The Department of Energy's Office of Biomass Program provided funding for biofuels functionality. More information on funding agencies is available: http://www.blueskyways.org and http://www.eere.energy.gov/biomass/.

The purpose of this study is to analyse the economical and environmental performance of switchgrass and miscanthus production and supply chains in the European Union (EU25), for the years 2004 and 2030. The environmental performance refers to the greenhouse gas (GHG) emissions, the primary fossil energy use and to the impact on fresh water reserves, soil erosion and biodiversity. Analyses are carried out for regions in five countries.

Author(s):
Edward M.W. Smeets

The important key technologies required for the successful biological conversion of lignocellulosic biomass to ethanol have been extensively reviewed. The biological process of ethanol fuel production utilizing lignocellulose as substrate requires: (1) delignification to liberate cellulose and hemicellulose from their complex with lignin, (2) depolymerization of the carbohydrate polymers (cellulose and hemicellulose) to produce free sugars, and (3) fermentation of mixed hexose and pentose sugars to produce ethanol.

Author(s):
Jeewon Lee

There is a strong societal need to evaluate and understand the sustainability of biofuels, especially because of the significant increases in production mandated by many countries, including the United States. Sustainability will be a strong factor in the regulatory environment and investments in biofuels. Biomass feedstock production is an important contributor to environmental, social, and economic impacts from biofuels.

Author(s):
Gayathri Gopalakrishnan