Skip to main content

KDF Search Results

Displaying 1 - 12 of 12

The generation of electricity, and the consumption of energy in general, often result in adverse effects on the environment. Coal-fired power plants generate over half of the electricity used in the U.S., and therefore play a significant role in any discussion of energy and the environment. By cofiring biomass, currently-operating coal plants have an opportunity to reduce the impact they have, but to what degree, and with what trade-offs? A life cycle assessment (LCA) has been conducted on a coal-fired power system that cofires wood residue.

Author(s):
Spath, Pam

Coal has the largest share of utility power generation in the U.S., accounting for approximately 56% of all utility-produced electricity (U.S. DOE, 1998). Therefore, understanding the environmental implications of producing electricity from coal is an important component of any plan to reduce total emissions and resource consumption.

Author(s):
Spath, Pam

To determine the environmental implications of producing electricity from biomass and coal, life cycle assessments (LCA) have been conducted on systems based on three power generation options: (1) a biomass-fired integrated gasification combined cycle (IGCC) system, (2) three coal-fired power plant technologies, and (3) a system cofiring waste biomass with coal.

Author(s):
Spath, Pam

Biodiesel is a renewable diesel fuel substitute that can be made by chemically combining any natural oil or fat with an alcohol such as methanol or ethanol. Methanol has been the most commonly used alcohol in the commercial production of biodiesel. In Europe, biodiesel is widely available in both its neat form (100% biodiesel, also known as B100) and in blends with petroleum diesel. Most European biodiesel is made from rapeseed oil (a cousin of canola oil).

Author(s):
Sheehan, John

Traffic flows in the U.S. have been affected by the substantial increase and, as of January 2009, decrease in biofuel production and use. This paper considers a framework to study the effect on grain transportation flows of the 2005 Energy Act and subsequent legislation, which mandated higher production levels of biofuels, e.g. ethanol and biodiesels. Future research will incorporate changes due to the recent economic slowdown.

Author(s):
Ahmedov, Zarabek

Agricultural markets often feature significant transport costs and spatially distributed production and processing which causes spatial imperfect competition. Spatial economics considers the firms’ decisions regarding location and spatial price strategy separately, usually on the demand side, and under restrictive assumptions. Therefore, alternative approaches are needed to explain, e.g., the location of new ethanol plants in the U.S. at peripheral as well as at central locations and the observation of different spatial price strategies in the market.

Author(s):
Graubner, Marten

Events external to agriculture have set in motion the conditions for structural change in the marketing of corn in the U.S. These included a rapid increase in the price of crude oil from $40 per barrel to over $100 caused by hurricanes, geopolitical events, an increased global demand for energy from countries like China and India, and in December 2007, the U.S. raising the renewable fuel standards. The results of this research show that there could be significant changes in the historical utilization and marketing of corn in the U.S.

Author(s):
Conley, Dennis M.

This is an overview of transportation issues facing a rapidly expanding U.S. ethanol industry in the context of the U.S. corn market—currently the main source of ethanol production in the United States. The aim of the report is to present a frame of reference as the ethanol industry continues to grow and additional transportation benchmarks and indicators develop by providing analysis of transportation requirements for corn-based ethanol and its impact on grain transportation.