Skip to main content

KDF Search Results

Displaying 1 - 15 of 15

The paper describes an approach to landscape design that focuses on integrating bioenergy production with their components of environmental, social and economic systems. Landscape design as used here refers to a spatially explicit, collaborative plan for management of landscapes and supply chains. Landscape design can involve multiple scales and build on existing practices to reduce costs or enhance services.

Author(s):
Virginia Dale , Keith Kline , Marilyn Buford , Timothy Volk , Tattersall Smith , Inge Stupak

Vimmerstedt, L. J., Bush, B. W., Hsu, D. D., Inman, D. and Peterson, S. O. (2014), Maturation of biomass-to-biofuels conversion technology pathways for rapid expansion of biofuels production: a system dynamics perspective. Biofuels, Bioprod. Bioref.. doi: 10.1002/bbb.1515
 
 
To explore this file download Tableau reader: http://www.tableausoftware.com/products/reader

Author(s):
NREL

Understanding the development of the biofuels industry in the United States is important to policymakers and industry. The Biomass Scenario Model (BSM) is a system dynamics model of the biomass-to-biofuels system that can be used to explore policy effects on biofuels development. Because of the complexity of the model, as well as the wide range of possible future conditions that affect biofuels industry development, we have not developed a single reference case but instead developed a set of specific scenarios that provide various contexts for our analyses.

Author(s):
Inman, D.; Vimmerstedt, L.; Bush, B.; Peterson, S.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Biomass Scenario Model: Supplemental Tableau workbook for Christopher M Clark et al 2013 Environ. Res. Lett. 8 025016 doi:10.1088/1748-9326/8/2/025016 Growing a sustainable biofuels industry: economics, environmental considerations, and the role of the Conservation Reserve Program

To explore this file download Tableau reader: http://www.tableausoftware.com/products/reader

This paper describes the current Biomass Scenario Model (BSM) as of August 2013, a system dynamics model developed under the support of the U.S. Department of Energy (DOE). The model is the result of a multi-year project at the National Renewable Energy Laboratory (NREL). It is a tool designed to better understand biofuels policy as it impacts the development of the supply chain for biofuels in the United States.

Author(s):
Peterson, Steve

The sustainability of future bioenergy production rests on more than continual improvements in its environmental, economic, and social impacts. The emergence of new biomass feedstocks, an expanding array of conversion pathways, and expected increases in overall bioenergy production are connecting diverse technical, social, and policy communities. These stakeholder groups have different—and potentially conflicting—values and cultures, and therefore different goals and decision making processes. Our aim is to discuss the implications of this diversity for bioenergy researchers.

Author(s):
Timothy Lawrence Johnson
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

In support of the national goals for biofuel use in the United States, numerous technologies have been developed that convert biomass to biofuels. Some of these biomass to biofuel conversion technology pathways are operating at commercial scales, while others are in earlier stages of development. The advancement of a new pathway toward commercialization involves various types of progress, including yield improvements, process engineering, and financial performance.

Author(s):
Laura J. Vimmerstedt , Brian W. Bush
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability.

Author(s):
Robert Boundy , Susan W. Diegel , Lynn Wright , Stacy C. Davis
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Defining and measuring sustainability of bioenergy systems are difficult because the systems are complex, the science is in early stages of development, and there is a need to generalize what are inherently contextspecific enterprises. These challenges, and the fact that decisions are being made now, create a need for improved communications among scientists as well as between scientists and decision makers.

Author(s):
Virginia H. Dale

The production of biobased feedstocks (i.e., plant– or algal-based material use for transportation fuels, heat, power and bioproducts) for energy consumption has been expanding rapidly in recent years. Biomass now accounts for 4.1% of total U.S. primary energy production. Unfortunately, there are considerable knowledge gaps relative to implications of this industry expansion for wildlife.

Author(s):
Rupp, S. P., L. Bies, A. Glaser, C. Kowaleski, T. McCoy, T. Rentz, S. Riffell, J. Sibbing, J. Verschuyl, and T. Wigley.

The 2011 Buildings Energy Data Book includes statistics on residential and commercial building energy consumption. Data tables contain statistics related to construction, building technologies, energy consumption, and building characteristics.

The Building Technologies Program within the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy developed this resource to provide a current and accurate set of comprehensive buildings- and energy-related data. The Data Book is an evolving document and is updated periodically.

USDA Agricultural Projections for 2011-20, released in February 2011, provide longrun projections for the farm sector for the next 10 years. These annual projections cover agricultural commodities, agricultural trade, and aggregate indicators of the sector, such as farm income and food prices.

Important assumptions for the projections include:

Author(s):
USDA Economic Research Service

In January 1976, the Transportation Energy Conservation (TEC) Division of the Energy Research and Development Administration contracted with Oak Ridge National Laboratory (ORNL) to prepare a Transportation Energy Conservation Data Book to be used by TEC staff in their evaluation of current and proposed conservation strategies. The major purposes of the Data Book were to draw together, under one cover, transportation data from diverse sources, to resolve data conflicts and inconsistencies, and to produce a comprehensive document.

In 2002, the Strategic Energy Analysis Center of the National Renewable Energy Laboratory (NREL) developed the first version of the Power Technologies Energy Data Book for the Office of Power Technologies of the U.S. Department of Energy (DOE).

Hydrogen Data Book - contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure)