Skip to main content

KDF Search Results

Displaying 1 - 8 of 8

Link to the website with documentation and download instructions for the PNNL Global Change Assessment Model (GCAM), a community model or long-term, global energy, agriculture, land use, and emissions. BioEnergy production, transformation, and use is an integral part of GCAM modeling and scenarios.

http://jgcri.github.io/gcam-doc/

Author(s):
Marshall Wise
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This spreadsheet serves as an Input file to the National Renewable Energy Laboratory's Waste-to-Energy System Simulation (WESyS) model developed in Stella Pro (isee systems, Lebanon, NH). WESyS is a national-level system dynamics model that simulates energy production from three sectors of the U.S. waste-to-energy industry: landfills, confined animal feeding operations (CAFOs), and publically owned treatment works (POTWs).

Author(s):
Daniel Inman, Annika Eberle, and Dylan Hettinger of the National Renewable Energy Laboratory; Steven Peterson and Corey Peck of Lexidyne, LLC.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This spreadsheet serves as an Input file to the National Renewable Energy Laboratory's Waste-to-Energy System Simulation (WESyS) model developed in Stella Pro (isee systems, Lebanon, NH). WESyS is a national-level system dynamics model that simulates energy production from three sectors of the U.S. waste-to-energy industry: landfills, confined animal feeding operations (CAFOs), and publically owned treatment works (POTWs).

Author(s):
Daniel Inman, Annika Eberle, and Dylan Hettinger of the National Renewable Energy Laboratory; Steven Peterson and Corey Peck of Lexidyne, LLC.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This spreadsheet serves as an Input file to the National Renewable Energy Laboratory's Waste-to-Energy System Simulation (WESyS) model developed in Stella Pro (isee systems, Lebanon, NH). WESyS is a national-level system dynamics model that simulates energy production from three sectors of the U.S. waste-to-energy industry: landfills, confined animal feeding operations (CAFOs), and publically owned treatment works (POTWs).

Author(s):
Daniel Inman, Annika Eberle, and Dylan Hettinger of the National Renewable Energy Laboratory; Steven Peterson and Corey Peck of Lexidyne, LLC.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Waste to Energy System Simulation Model (WESyS) - Scenario Inputs and Supplemental Tableau Workbook
Daniel Inman, Ethan Warner, Anelia Milbrandt, Alberta Carpenter, Ling Tao, Emily Newes, and Steve Peterson (Lexidyne, LLC)

Author(s):
Daniel Inman, Ethan Warner, Anelia Milbrandt, Alberta Carpenter, Ling Tao, Emily Newes, and Steve Peterson (Lexidyne, LLC)
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Landscape ecology focuses on the spatial patterns and processes of ecological and human interactions. These patterns and processes are being altered by both changing resource-management practices of humans and changing climate conditions associated, in part, with increases in atmospheric concentrations of greenhouse gases. Dominant resource-extraction and land-management activities involve energy, and the use of fossil energy is one of the key drivers behind increasing greenhouse gas emissions as well as land-use changes.

Author(s):
Virginia H. Dale , Rebecca A. Efroymson , Keith L. Kline

NHD Basin Boundaries developed from the Watershed Boundary Dataset (WBD).

Author(s):
U.S. Geological Survey (USGS) Water Resources Division (WRD)

The National Hydrography Dataset (NHD) and Watershed Boundary Dataset (WBD) are used to portray surface water on The National Map. The NHD represents the drainage network with features such as rivers, streams, canals, lakes, ponds, coastline, dams, and streamgages. The WBD represents drainage basins as enclosed areas in eight different size categories. The NHD is portrayed on the US Topo map product produced by the USGS and the NHD and WBD can be viewed on the Hydrography Viewer or the general mapping oriented The National Map Viewer.

Author(s):
U.S. Geological Survey