Skip to main content

KDF Search Results

Displaying 1 - 20 of 126

Simulations under this dataset were targeted to a specific fuelshed in Iowa.
Integrated land management (ILM) applications were targeted under this research, although the results of these simulations are at the county level; downscaling post-processing will be applied.

Organization:
DOE
Author(s):
Maggie R. Davis
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Link to the website with documentation and download instructions for the PNNL Global Change Assessment Model (GCAM), a community model or long-term, global energy, agriculture, land use, and emissions. BioEnergy production, transformation, and use is an integral part of GCAM modeling and scenarios.

http://jgcri.github.io/gcam-doc/

Author(s):
Marshall Wise
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This workshop examines the potential benefits, feasibility, and barriers to the use of biofuels in place of heavy fuel oil (HFO) and marine gas oil for marine vessels. More than 90% of world’s shipped goods
travel by marine cargo vessels powered by internal combustion (diesel) engines using primarily low-cost residual HFO, which is high in sulfur content. Recognizing that marine shipping is the largest source of

Organization:
DOE
Author(s):
Mike Kass , Zia Abdullah , Mary Biddy , Corinne Drennan , Troy Hawkins , Susanne Jones , Johnathan Holladay , Dough Longman , Emily Newes , Tim Theiss , Tom Thompson , Michael Wang
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Synthesis manuscript for an Ecology & Society Special Feature on Telecoupling: A New Frontier for Global Sustainability

Author(s):
Esther Parish, Environmental Sciences Division, Oak Ridge National Laboratory , Anna Herzeberger, Department of Fisheries and Wildlife, Center for Systems Integration and Sustainability, Michigan State University , Colin Phifer, School of Forest Resources and Environmental Science, Michigan Technological University , Virginia Dale, Environmental Sciences Division, Oak Ridge National Laboratory
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Simulated Response of Avian Biodiversity to Biomass Production. 2017. Chapter 10 in R.A. Efroymson et al. eds., 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 2: Environmental Sustainability Effects of Select Scenarios from Volume 1. ORNL/TM-2016/727. Oak Ridge National Laboratory, Oak Ridge, TN, pp.140-182. DOI: 10.2172/1338837, https://energy.gov/eere/bioenergy/downloads/2016-billion-ton-report-vol…

Author(s):
Henriette I. Jager , Gangsheng Wang , Jasmine Kreig , Nathan Sutton , Ingrid Busch
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Jager, H. I., M. Wu, M. Ha, L. Baskaran and J. Krieg. 2017. Water Quality Responses to Simulated Management Practices on Agricultural Lands Producing Biomass Feedstocks in Two Tributary Basins of the Mississippi River, in R.A. Efroymson et al. eds., 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 2: Environmental Sustainability Effects of Select Scenarios from Volume 1. ORNL/TM-2016/727. Oak Ridge National Laboratory, Oak Ridge, TN, pp.140-182.

Author(s):
Henriette I. Jager
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

With the goal of understanding environmental effects of a growing bioeconomy, the U.S. Department of Energy (DOE), national laboratories, and U.S. Forest Service research laboratories, together with academic and industry collaborators, undertook a study to estimate environmental effects of potential biomass production scenarios in the United States, with an emphasis on agricultural and forest biomass. Potential effects investigated include changes in soil organic carbon (SOC), greenhouse gas (GHG) emissions, water quality and quantity, air emissions, and biodiversity.

Author(s):
R. A. Efroymson , M. H. Langholtz , E. Johnson , B. J. Stokes
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This article connects the science of sustainability theory with applied aspects of sustainability deployment. A suite of 35 sustainability indicators spanning 12 environmental and socioeconomic categories has been proposed for comparing the sustainability of bioenergy production systems across different feedstock types and locations.

Author(s):
Esther S. Parish , Virginia H. Dale , Burton C. English , Samuel W. Jackson , Donald D. Tyler
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The paper describes an approach to landscape design that focuses on integrating bioenergy production with other components of environmental, social and economic systems. Landscape design as used here refers to a spatially explicit, collaborative plan for management of landscapes and supply chains. Landscape design can involve multiple scales and build on existing practices to reduce costs or enhance services.

Author(s):
Dale VH , KL Kline , MA Buford , TA Volk , CT Smith , I Stupak
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The Paris Agreement and the EU Climate and Energy Framework set ambitious but necessary targets. Reducing greenhouse gas (GHG) emissions by phasing out the technologies and infrastructures that cause fossil carbon emissions is one of today’s most important challenges. In the EU, bioenergy is currently the largest renewable energy source used. Most Member States have in absolute terms increased the use of forest biomass for energy to reach their 2020 renewable energy targets.

Author(s):
Göran Berndes , Bob Abt , Antti Asikainen , Annette Cowie , Virginia Dale , Gustaf Egnell , Marcus Lindner , Luisa Marelli , David Paré , Kim Pingoud , Sonia Yeh

We propose a causal analysis framework to increase understanding of land-use change (LUC) and the reliability of LUC models. This health-sciences-inspired framework can be applied to determine probable causes of LUC in the context of bioenergy. Calculations of net greenhouse gas (GHG) emissions for LUC associated with biofuel production are critical in determining whether a fuel qualifies as a biofuel or advanced biofuel category under regional (EU), national (US, UK), and state (California) regulations.

Author(s):
Efroymson RA , Kline KL , Angelsen A , Verburg PH , Dale VH , Langeveld JWA , McBride A
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Abstract: Cellulosic-based biofuels are needed to help meet energy needs and to strengthen rural investment and development in the midwestern United States (US). This analysis identifies 11 categories of indicators to measure progress toward sustainability that should be monitored to determine if ecosystem and social services are being maintained, enhanced, or disrupted by production, harvest, storage, and transport of cellulosic feedstock.

Author(s):
Virginia H. Dale , Keith L. Kline , Tom L. Richard , Doug L. Karlen
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Social and economic indicators can be used to support design of sustainable energy systems. Indicators representing categories of social well-being, energy security, external trade, profitability, resource conservation, and social acceptability have not yet been measured in published sustainability assessments for commercial algal biofuel facilities.

Organization:
DOE
Author(s):
Rebecca A. Efroymson , Virginia H. Dale , Matthew H. Langholtz
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Renewable, biomass-based energy options can reduce the climate impacts of fossil fuels.

Author(s):
Virginia H Dale , Keith L Kline , Gregg Marland , Reid A Miner
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The development of modern high efficiency bioenergy technologies has the
potential to improve energy security and access while reducing environmental impacts
and stimulating low-carbon development. While modern bioenergy production is
increasing in the world, it still makes a small contribution to our energy matrix.
At present, approximately 87% of energy demand is satisfied by energy produced
through consumption of fossil fuels. Although the International Energy Agency (IEA)

Author(s):
Joly, CA , Huntley, BJ , Verdade, LM , Dale, VH , Mace, G , Muok, B , Ravindranath, NH

This report summarizes the results of an IEA Bioenergy inter-Task project involving collaborators from Tasks 37 (Energy from Biogas), 38 (Climate Change Effects of Biomass and Bioenergy Systems), 39 (Commercialising Conventional and Advanced Liquid Biofuels from Biomass), 40 (Sustainable International Bioenergy Trade: Securing Supply and Demand), 42 (Biorefining – Sustainable Processing of Biomass into a Spectrum of Marketable Bio-based Products and Bioenergy), and 43 (Biomass Feedstocks for Energy Markets).

Author(s):
Smith CT , Kline KL , Parish ES , Dale VH

Conventional feedstock supply systems exist and have been developed for traditional agriculture and forestry systems. These conventional feedstock supply systems can be effective in high biomass-yielding areas (such as for corn stover in Iowa and plantation-grown pine trees in the southern United States), but they have their limits, particularly with respect to addressing feedstock quality and reducing feedstock supply risk to biorefineries. They also are limited in their ability to efficiently deliver energy crops.

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.