Skip to main content

KDF Search Results

Displaying 21 - 29 of 29

Prior studies have estimated that a liter of bioethanol requires 263−784 L of water from corn farm to fuel pump, but these estimates have failed to account for the widely varied regional irrigation practices. By using regional time-series agricultural and ethanol production data in the U.S., this paper estimates the state-level field-to-pump water requirement of bioethanol across the nation. The results indicate that bioethanol’s water requirements can range from 5 to 2138 L per liter of ethanol depending on regional irrigation practices.

Author(s):
Yi-Wen Chiu

The United States shares with many other countries the goal of the United Nations Framework Convention on Climate Change “to achieve . . . stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system.”1 The critical role of new technologies in achieving this goal is underscored by the fact that most anthropogenic greenhouse gases (GHGs) emitted over the next century will come from equipment and infrastructure that has not yet been built.

Author(s):
Marilyn A. Brown

Ethanol production using corn grain has exploded in the Upper Midwest. This new demand for corn, and the new opportunities
for value-added processing and cattle production in rural communities, has created the best economic development
opportunity in the Corn Belt states in a generation or more. Ethanol demand has increased rapidly recently because of favorable
economics of ethanol vs. gasoline, and the need for a performance enhancer to replace MTBE (methyl tertiary-butyl ether)

Author(s):
Dennis Keeney

The most frequently used climate classification map is that ofWladimir Köppen, presented in its latest version
1961 by Rudolf Geiger. A huge number of climate studies and subsequent publications adopted this or a
former release of the Köppen-Geiger map. While the climate classification concept has been widely applied
to a broad range of topics in climate and climate change research as well as in physical geography, hydrology,
agriculture, biology and educational aspects, a well-documented update of the world climate classification

Author(s):
Dr. Markus Kottek

In a previous paper we presented an update of the highly referenced climate classification map, that of Wladimir Koppen, which was published for the first time in 1900 and updated in its latest version by Rudolf Geiger in 1961. This updated world map of Koppen-Geiger climate classification was based on temperature and precipitation observations for the period 1951–2000.

Author(s):
Dr. Franz Rubel

We highlight the complexity of land-use/cover change and propose a framework for a more general understanding of the issue, with emphasis on tropical regions. The review summarizes recent estimates on changes in cropland, agricultural intensification, tropical deforestation, pasture expansion, and urbanization and identifies the still unmeasured land-cover changes. Climate-driven land-cover modifications interact with land-use changes.

Author(s):
Lambin,E.F.

When fuelwood is harvested at a rate exceeding natural growth and inefficient conversion technologies are used, negative environmental and socio-economic impacts, such as fuelwood shortages, natural forests degradation and net GHG emissions arise. In this study, we argue that analyzing fuelwood supply/demand spatial patterns require multiscale approaches to effectively bridge the gap between national results with local situations.

Author(s):
Ghilardi,Adria?n

This paper describes a methodology to explore the (future) spatial distribution of biofuel crops in Europe. Two main types of biofuel crops are distinguished: biofuel crops used for the production of biodiesel or bioethanol, and second-generation biofuel crops. A multiscale, multi-model approach is used in which biofuel crops are allocated over the period 2000?2030. The area of biofuel crops at the national level is determined by a macroeconomic model. A spatially explicit land use model is used to allocate the biofuel crops within the countries.

Author(s):
Hellman,Fritz