Skip to main content

KDF Search Results

Displaying 1 - 20 of 33

Synthesis manuscript for an Ecology & Society Special Feature on Telecoupling: A New Frontier for Global Sustainability

Author(s):
Esther Parish, Environmental Sciences Division, Oak Ridge National Laboratory , Anna Herzeberger, Department of Fisheries and Wildlife, Center for Systems Integration and Sustainability, Michigan State University , Colin Phifer, School of Forest Resources and Environmental Science, Michigan Technological University , Virginia Dale, Environmental Sciences Division, Oak Ridge National Laboratory
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Social and economic indicators can be used to support design of sustainable energy systems. Indicators representing categories of social well-being, energy security, external trade, profitability, resource conservation, and social acceptability have not yet been measured in published sustainability assessments for commercial algal biofuel facilities.

Organization:
DOE
Author(s):
Rebecca A. Efroymson , Virginia H. Dale , Matthew H. Langholtz
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Water consumption and water quality continue to be key factors affecting environmental sustainability in biofuel production. This review covers the findings from biofuel water analyses published over the past 2 years to underscore the progress made, and to highlight advancements in understanding the interactions among increased production and water demand, water resource availability, and potential changes in water quality. We focus on two key areas: water footprint assessment and watershed modeling.

Organization:
DOE
Author(s):
May Wu , Zhonglong Zhang , Yiwen Chiu
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

For analyzing sustainability of algal biofuels, we identify 16 environmental indicators that fall into six categories: soil quality, water quality and quantity, air quality, greenhouse gas emissions, biodiversity, and productivity. Indicators are selected to be practical, widely applicable, predictable in response, anticipatory of future changes, independent of scale, and responsive to management.

Author(s):
R. A. Efroymson
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels.

Author(s):
Department of Energy

A broad-scale perspective on the nexus between climate change, land use, and energy requires consideration of interactions that were often omitted from climate change studies. While prior analyses have considered how climate change affects land use and vice versa (Dale 1997), there is growing awareness of the need to include energy within the analytical framework. A broad-scale perspective entails examining patterns and process at divers spatial and temporal resolutions.

Author(s):
Virginia H. Dale

Meeting the Energy Independence and Security Act (EISA) renewable fuels goals requires development
of a large sustainable domestic supply of diverse biomass feedstocks. Macroalgae, also known as
seaweed, could be a potential contributor toward this goal. This resource would be grown in marine
waters under U.S. jurisdiction and would not compete with existing land-based energy crops.
Very little analysis has been done on this resource to date. This report provides information needed for an

Organization:
DOE
Author(s):
Roesijadi, G

The Center for Sustainability and the Global Environment (SAGE) at the University of Wisconsin has been developing global databases of contemporary and historical agricultural land use and land cover. SAGE has chosen to focus on agriculture because it is clearly the predominant land use activity on the planet today, and provides a vital service?i.e., food?for human societies. SAGE has developed a ?data fusion?

Author(s):
Monfreda, Chad

Growing concern about climate change and energy security has led to increasing interest in developing renewable, domestic energy sources for meeting electricity, heating and fuel needs in the United States. Illinois has significant potential to produce bioenergy crops, including corn, soybeans, miscanthus (Miscanthus giganteus), and switchgrass (Panicum virgatum). However, land requirements for bioenergy crops place them in competition with more traditional agricultural uses, in particular food production.

Author(s):
Scheffran, Jurgen

This paper presents a range of future, spatially explicit, land use change scenarios for the EU15, Norway and Switzerland based on an interpretation of the global storylines of the Intergovernmental Panel on Climate Change (IPCC) that are presented in the special report on emissions scenarios (SRES). The methodology is based on a qualitative interpretation of the SRES storylines for the European region, an estimation of the aggregate totals of land use change using various land use change models and the allocation of these aggregate quantities in space using spatially explicit rules.

Author(s):
Rounsevell M.D.A.

An analysis was performed at NREL to examine the global warming potential and energy balance of power generation from fossil and biomass systems including CO2 sequestration. To get the true environmental picture, a life cycle approach, which takes into account upstream process steps, was applied. Each system maintained the same constant generating capacity and any lost capacity due to CO2 sequestration was accounted for by adding power generation from a natural gas combined-cycle system. This paper discusses the systems examined and gives the net energy and GWP for each system.

Author(s):
Spath, Pam

This model was developed at Idaho National Laboratory and focuses on crop production. This model is an agricultural cultivation and production model, but can be used to estimate biomass crop yields.

Author(s):
Hoskinson, R.L.

The U.S. Department of Energy has supported a research and development program for the establishment of renewable, biomass-derived, liquid fuels for the better part of the last twenty years. These 'biofuels' represent opportunities to respond to uncertainties about our energy security and the future health of our environment. Throughout its history, the Biofuels Program has experienced an ongoing fiscal 'roller coaster'. Funding has ebbed and flowed with changing political and public attitudes about energy.

Author(s):
Sheehan, J.

NREL's energy-water modeling and analysis activities analyze the interactions and dependencies of water with the dynamics of the power sector and the transportation sector. A variety of models and tools are utilized to consider water as a critical resource for power sector development and operations as well as transportation fuels.

National Centers for Coastal Ocean Science (NCCOS) has published the availability of funds and Announcements of Opportunity for the competitive programs.

The Monitoring and Event Response for Harmful Algal Blooms (MERHAB) Research Program builds capacity along our coasts for enhanced HAB monitoring and response. This helps NOAA and state partners identify when beaches, shellfisheries, and marine animals are at risk from harmful algae, and to make informed decisions that protect public health and safeguard our coastal economies.

NOAA and other federal agencies administer a variety of financial assistance programs that support sustainable aquaculture in the United States. Funding may address a variety of issues such as environmental monitoring, recirculating aquaculture systems, shellfish farming, alternative feeds for aquaculture, new species research, and offshore aquaculture. The programs below outline NOAA-managed funding opportunities for aquaculture and funding opportunities available through other agencies or venues.

NOAA's National Centers for Coastal Ocean Science's (NCCOS's) PCMHAB program funds research to move promising technologies for preventing, controlling, or mitigating HABs and their impacts through development, to demonstration, and, finally application, culminating in wide spread use in the field by end-users. A more detailed description of the program and its projects are available at the link below.

The U.S. biomass resource can be used several ways that provide domestic, renewable energy to users. Understanding the capacity of the biomass resource, its potential in energy markets, and the most economic utilization of biomass is important in policy development and project selection. This study analyzed the potential for biomass within markets and the competition between them.

Organization:
DOE