Skip to main content

KDF Search Results

Displaying 1 - 20 of 39

Synthesis manuscript for an Ecology & Society Special Feature on Telecoupling: A New Frontier for Global Sustainability

Author(s):
Esther Parish, Environmental Sciences Division, Oak Ridge National Laboratory , Anna Herzeberger, Department of Fisheries and Wildlife, Center for Systems Integration and Sustainability, Michigan State University , Colin Phifer, School of Forest Resources and Environmental Science, Michigan Technological University , Virginia Dale, Environmental Sciences Division, Oak Ridge National Laboratory
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The U.S. Department of Energy’s (DOE’s) Co-Optimization (Co-Optima) initiative is accelerating the introduction of affordable, scalable, and sustainable fuels and high-efficiency, low-emission engines with a first-of-its-kind effort to simultaneously tackle fuel and engine research and development (R&D).

Author(s):
John Farrell , John Holladay , Robert Wagner
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

There is an inextricable link between energy production and food/feed/fiber cultivation with available water resources. Currently in the United States, agriculture represents the largest sector of consumptivewater usemaking up 80.7%of the total. Electricity generation in the U.S. is projected to increase by 24 % in the next two decades and globally, the production of liquid transportation fuels are forecasted to triple over the next 25-years, having significant impacts on the import/export market and global economies.

Author(s):
Brandon C. Moore
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Water consumption and water quality continue to be key factors affecting environmental sustainability in biofuel production. This review covers the findings from biofuel water analyses published over the past 2 years to underscore the progress made, and to highlight advancements in understanding the interactions among increased production and water demand, water resource availability, and potential changes in water quality. We focus on two key areas: water footprint assessment and watershed modeling.

Organization:
DOE
Author(s):
May Wu , Zhonglong Zhang , Yiwen Chiu
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Understanding the environmental effects of alternative fuel production is critical to characterizing the sustainability of energy resources to inform policy and regulatory decisions. The magnitudes of these environmental effects vary according to the intensity and scale of fuel production along each step of the supply chain. We compare the spatial extent and temporal duration of ethanol and gasoline production processes and environmental effects based on a literature review and then synthesize the scale differences on space-time diagrams.

Author(s):
Parish, Esther

A broad-scale perspective on the nexus between climate change, land use, and energy requires consideration of interactions that were often omitted from climate change studies. While prior analyses have considered how climate change affects land use and vice versa (Dale 1997), there is growing awareness of the need to include energy within the analytical framework. A broad-scale perspective entails examining patterns and process at divers spatial and temporal resolutions.

Author(s):
Virginia H. Dale

The Center for Sustainability and the Global Environment (SAGE) at the University of Wisconsin has been developing global databases of contemporary and historical agricultural land use and land cover. SAGE has chosen to focus on agriculture because it is clearly the predominant land use activity on the planet today, and provides a vital service?i.e., food?for human societies. SAGE has developed a ?data fusion?

Author(s):
Monfreda, Chad

Growing concern about climate change and energy security has led to increasing interest in developing renewable, domestic energy sources for meeting electricity, heating and fuel needs in the United States. Illinois has significant potential to produce bioenergy crops, including corn, soybeans, miscanthus (Miscanthus giganteus), and switchgrass (Panicum virgatum). However, land requirements for bioenergy crops place them in competition with more traditional agricultural uses, in particular food production.

Author(s):
Scheffran, Jurgen

This paper presents a range of future, spatially explicit, land use change scenarios for the EU15, Norway and Switzerland based on an interpretation of the global storylines of the Intergovernmental Panel on Climate Change (IPCC) that are presented in the special report on emissions scenarios (SRES). The methodology is based on a qualitative interpretation of the SRES storylines for the European region, an estimation of the aggregate totals of land use change using various land use change models and the allocation of these aggregate quantities in space using spatially explicit rules.

Author(s):
Rounsevell M.D.A.

An analysis was performed at NREL to examine the global warming potential and energy balance of power generation from fossil and biomass systems including CO2 sequestration. To get the true environmental picture, a life cycle approach, which takes into account upstream process steps, was applied. Each system maintained the same constant generating capacity and any lost capacity due to CO2 sequestration was accounted for by adding power generation from a natural gas combined-cycle system. This paper discusses the systems examined and gives the net energy and GWP for each system.

Author(s):
Spath, Pam

This model was developed at Idaho National Laboratory and focuses on crop production. This model is an agricultural cultivation and production model, but can be used to estimate biomass crop yields.

Author(s):
Hoskinson, R.L.

The U.S. Department of Energy has supported a research and development program for the establishment of renewable, biomass-derived, liquid fuels for the better part of the last twenty years. These 'biofuels' represent opportunities to respond to uncertainties about our energy security and the future health of our environment. Throughout its history, the Biofuels Program has experienced an ongoing fiscal 'roller coaster'. Funding has ebbed and flowed with changing political and public attitudes about energy.

Author(s):
Sheehan, J.

NREL's energy-water modeling and analysis activities analyze the interactions and dependencies of water with the dynamics of the power sector and the transportation sector. A variety of models and tools are utilized to consider water as a critical resource for power sector development and operations as well as transportation fuels.

The U.S. biomass resource can be used several ways that provide domestic, renewable energy to users. Understanding the capacity of the biomass resource, its potential in energy markets, and the most economic utilization of biomass is important in policy development and project selection. This study analyzed the potential for biomass within markets and the competition between them.

Organization:
DOE

Increasing demand for crop-based biofuels, in addition to other human drivers of land use, induces direct and indirect land use changes (LUC). Our system dynamics tool is intended to complement existing LUC modeling approaches and to improve the understanding of global LUC drivers and dynamics by allowing examination of global LUC under diverse scenarios and varying model assumptions. We report on a small subset of such analyses.

Interest in using biomass feedstocks to produce power, liquid fuels, and chemicals in the U.S. is increasing. Central to determining the potential for these industries to develop is an understanding of the location, quantities, and prices of biomass resources. This paper describes the methodology used to estimate biomass quantities and prices for each state in the continental U.S. An Excel™ spreadsheet contains estimates of biomass quantities potentially available in five categories: mill wastes, urban wastes, forest residues, agricultural residues and energy crops.