Skip to main content

KDF Search Results

Displaying 1 - 20 of 30

Synthesis manuscript for an Ecology & Society Special Feature on Telecoupling: A New Frontier for Global Sustainability

Author(s):
Esther Parish, Environmental Sciences Division, Oak Ridge National Laboratory , Anna Herzeberger, Department of Fisheries and Wildlife, Center for Systems Integration and Sustainability, Michigan State University , Colin Phifer, School of Forest Resources and Environmental Science, Michigan Technological University , Virginia Dale, Environmental Sciences Division, Oak Ridge National Laboratory
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

In this paper we investigate the potential production and implications of a global biofuels industry. We develop alternative approaches to the introduction of land as an economic factor input, in value and physical terms, into a computable general equilibrium framework. Both approach allows us to parameterize biomass production in a manner consistent with agro-engineering information on yields and a ?second generation? cellulosic biomass conversion technology.

Author(s):
Gurgel, Angelo

Agricultural activities have dramatically altered our planet?s land surface. To understand the extent and spatial distribution of these changes, we have developed a new global data set of croplands and pastures circa 2000 by combining agricultural inventory data and satellite-derived land cover data. The agricultural inventory data, with much greater spatial detail than previously available, is used to train a land cover classification data set obtained by merging two different satellite-derived products (Boston University?s MODIS-derived land cover product and the GLC2000 data set).

Author(s):
Ramankutty, Navin

The preceding two chapters of this volume have discussed physical and economic data bases for global agriculture and forestry, respectively. These form the foundation for the integrated, global land use data base discussed in this chapter. However, in order to utilize these data for global CGE analysis, it is first necessary to integrate them into a global, general equilibrium data base. This integration is the subject of the present chapter

Author(s):
Huey-Lin Lee

Growing concern about climate change and energy security has led to increasing interest in developing renewable, domestic energy sources for meeting electricity, heating and fuel needs in the United States. Illinois has significant potential to produce bioenergy crops, including corn, soybeans, miscanthus (Miscanthus giganteus), and switchgrass (Panicum virgatum). However, land requirements for bioenergy crops place them in competition with more traditional agricultural uses, in particular food production.

Author(s):
Scheffran, Jurgen

This paper describes the GTAP land use data base designed to support integrated assessments of the potential for greenhouse gas mitigation. It disaggregates land use by agro-ecological zone (AEZ). To do so, it draws upon global land cover data bases, as well as state-of-the-art definition of AEZs from the FAO and IIASA. Agro-ecological zoning segments a parcel of land into smaller units according to agro-ecological characteristics, including: precipitation, temperature, soil type, terrain conditions, etc. Each zone has a similar combination of constraints and potential for land use.

Author(s):
Huey-Lin Lee

The paper describes the on-going project of the GTAP land use data base. We also present the GTAPE-AEZ model, which illustrates how land use and land-based emissions can be incorporated in the CGE framework for Integrated Assessment (IA) of climate change policies. We follow the FAO fashion of agro-ecological zoning (FAO, 2000; Fischer et al, 2002) to identify lands located in six zones. Lands located in a specific AEZ have similar (or homogenous) soil, landform and climatic characteristics.

Author(s):
Lee, Huey-Lin

Land-use change models are important tools for integrated environmental management. Through scenario analysis they can help to identify near-future critical locations in the face of environmental change. A dynamic, spatially explicit, land-use change model is presented for the regional scale: CLUE-S. The model is specifically developed for the analysis of land use in small regions (e.g., a watershed or province) at a fine spatial resolution.

Author(s):
Verburg,P.H.

The generation of electricity, and the consumption of energy in general, often result in adverse effects on the environment. Coal-fired power plants generate over half of the electricity used in the U.S., and therefore play a significant role in any discussion of energy and the environment. By cofiring biomass, currently-operating coal plants have an opportunity to reduce the impact they have, but to what degree, and with what trade-offs? A life cycle assessment (LCA) has been conducted on a coal-fired power system that cofires wood residue.

Author(s):
Spath, Pam

Coal has the largest share of utility power generation in the U.S., accounting for approximately 56% of all utility-produced electricity (U.S. DOE, 1998). Therefore, understanding the environmental implications of producing electricity from coal is an important component of any plan to reduce total emissions and resource consumption.

Author(s):
Spath, Pam

To determine the environmental implications of producing electricity from biomass and coal, life cycle assessments (LCA) have been conducted on systems based on three power generation options: (1) a biomass-fired integrated gasification combined cycle (IGCC) system, (2) three coal-fired power plant technologies, and (3) a system cofiring waste biomass with coal.

Author(s):
Spath, Pam

Biodiesel is a renewable diesel fuel substitute that can be made by chemically combining any natural oil or fat with an alcohol such as methanol or ethanol. Methanol has been the most commonly used alcohol in the commercial production of biodiesel. In Europe, biodiesel is widely available in both its neat form (100% biodiesel, also known as B100) and in blends with petroleum diesel. Most European biodiesel is made from rapeseed oil (a cousin of canola oil).

Author(s):
Sheehan, John

The U.S. biomass resource can be used several ways that provide domestic, renewable energy to users. Understanding the capacity of the biomass resource, its potential in energy markets, and the most economic utilization of biomass is important in policy development and project selection. This study analyzed the potential for biomass within markets and the competition between them.

Organization:
DOE

Interest in using biomass feedstocks to produce power, liquid fuels, and chemicals in the U.S. is increasing. Central to determining the potential for these industries to develop is an understanding of the location, quantities, and prices of biomass resources. This paper describes the methodology used to estimate biomass quantities and prices for each state in the continental U.S. An Excel™ spreadsheet contains estimates of biomass quantities potentially available in five categories: mill wastes, urban wastes, forest residues, agricultural residues and energy crops.

ABSTRACT: A growing number of countries are implementing greenhouse gas (GHG) emissions trading schemes. As these schemes impose a cost for GHG emissions they should increase the competitiveness of low carbon fuels. Bioenergy from biomass is regarded as carbon neutral in most of the schemes, therefore incurring no emission costs. Emissions trading schemes may therefore encourage increased use of biomass for energy, and under certain conditions may also incentivize the construction of new bioenergy plants.