Skip to main content

KDF Search Results

Displaying 61 - 73 of 73

Since the mid-1990s there has been a growing worldwide interest in alternative transport fuels, of which ethanol is among the most promising options. This interest has in recent years gathered pace, stimulated by high oil prices and the generally perceived view that this trend is likely to accentuate in the future. The need to reduce GHG emissions is also a fundamental reason for this interest. The focus of this paper is on fuel ethanol production from sugar and starches with emphasis on short-term issues and implications for the global market.

Author(s):
Frank Rosillo-Calle

The rapidly expanding biofuel industry has changed the fundamentals of U.S. agricultural commodity markets. Increasing ethanol and biodiesel production has generated a fast-growing demand for corn and soybean products, which competes with the well-established domestic livestock industry and foreign buyers. Meanwhile, the co-products of biofuel production are replacing or displacing coarse grains and oilseed meal in feed rations for livestock.

Author(s):
Tun-Hsiang (Edward) Yu

There is a strong societal need to evaluate and understand the sustainability of biofuels, especially because of the significant increases in production mandated by many countries, including the United States. Sustainability will be a strong factor in the regulatory environment and investments in biofuels. Biomass feedstock production is an important contributor to environmental, social, and economic impacts from biofuels.

Author(s):
Gayathri Gopalakrishnan

Supply chain management involves all of the activities in industrial organizations from raw material procurement to final product delivery to customers. The main aim in supply chain management is to satisfy production requirements, while optimizing the economic objectives. In traditional fossil fuel supply chains, huge amounts of fossil fuels are transported via pipelines or tankers with very small costs. These fuels can be transformed into other sources of energy or transportation fuels at their destination points.

Author(s):
Ahu Soylu

A method is presented, which estimates the potential for power production from agriculture residues. A GIS decision support system (DSS) has been developed, which implements the method and provides the tools to identify the geographic distribution of the economically exploited biomass potential. The procedure introduces a four level analysis to determine the
theoretical, available, technological and economically exploitable potential. The DSS handles all possible restrictions and

Author(s):
D. Voivontas

Land use has generally been considered a local environmental issue, but it is becoming a force of global importance. Worldwide changes to forests, farmlands, waterways, and air are being driven by the need to provide food, fiber, water, and shelter to more than six billion people. Global croplands, pastures, plantations, and urban areas have expanded in recent decades, accompanied by large increases in energy, water, and fertilizer consumption, along with considerable losses of biodiversity.

Author(s):
Foley, Jonathan A.

The U.S. Geological Survey (USGS) 2001 National Land Cover Database (NLCD) was compared to the U.S. Department of Agriculture (USDA) 2002 Census of Agriculture. Wecompared areal estimates for cropland at the state and county level for 14 States in the Upper Midwest region of the United States. Absolute differences between the NLCD and Census cropland areal estimates at the state level ranged from 1.3% (Minnesota) to 37.0% (Wisconsin). The majority of counties (74.5%) had differences of less than 100 km2. 7.2% of the counties had differences of more than 200 km2.

Author(s):
Maxwell, S.K.

Accurate and up-to-date global land cover data sets are necessary for various global change research studies including climate change, biodiversity conservation, ecosystem assessment, and environmental modeling. In recent years, substantial advancement has been achieved in generating such data products. Yet, we are far from producing geospatially consistent high-quality data at an operational level.

Author(s):
Chandra Giri

We highlight the complexity of land-use/cover change and propose a framework for a more general understanding of the issue, with emphasis on tropical regions. The review summarizes recent estimates on changes in cropland, agricultural intensification, tropical deforestation, pasture expansion, and urbanization and identifies the still unmeasured land-cover changes. Climate-driven land-cover modifications interact with land-use changes.

Author(s):
Lambin,E.F.

Greenhouse gas release from land use change (the socalled ?carbon debt?) has been identified as a potentially significant contributor to the environmental profile of biofuels. The time required for biofuels to overcome this carbon debt duetolandusechangeandbeginprovidingcumulativegreenhouse gas benefits is referred to as the ?payback period? and has been estimated to be 100-1000 years depending on the specific ecosystem involved in the land use change event. Two mechanisms for land use change exist: ?direct?

Author(s):
Kim,Hyungtae

Two of the most widely used land-cover data sets for the United States are the National Land-Cover Data (NLCD) at 30-m resolution and the Global Land- Cover Characteristics (GLCC) at 1-km nominal resolution. Both data sets were produced around 1992 and expected to provide similar land-cover information. This study investigated the spatial distribution of NLCD within major GLCC classes at 1-km unit over a total of 11 agricultural-related eco-regions across the continental United States.

Author(s):
Pei-Yu Chen

Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to lowcarbon fuels a high priority. Biofuels are a potential lowcarbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food-based biofuels in Brazil, Southeast Asia, and the United States creates a ?biofuel carbon debt? by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions these biofuels provide by displacing fossil fuels.

Author(s):
Fargione, Joseph

For several years the Idaho National Laboratory (INL) has been developing a Decision Support System for Agriculture (DSS4Ag) which determines the economically optimum recipe of various fertilizers to apply at each site in a field to produce a crop, based on the existing soil fertility at each site, as well as historic production information and current prices of fertilizers and the forecast market price of the crop at harvest.

Author(s):
Hoskinson Reed L.