Skip to main content

KDF Search Results

Displaying 1 - 20 of 27

The U.S. Department of Energy’s (DOE’s) Co-Optimization (Co-Optima) initiative is accelerating the introduction of affordable, scalable, and sustainable fuels and high-efficiency, low-emission engines with a first-of-its-kind effort to simultaneously tackle fuel and engine research and development (R&D).

Author(s):
John Farrell , John Holladay , Robert Wagner
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

For analyzing sustainability of algal biofuels, we identify 16 environmental indicators that fall into six categories: soil quality, water quality and quantity, air quality, greenhouse gas emissions, biodiversity, and productivity. Indicators are selected to be practical, widely applicable, predictable in response, anticipatory of future changes, independent of scale, and responsive to management.

Author(s):
R. A. Efroymson
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Understanding the environmental effects of alternative fuel production is critical to characterizing the sustainability of energy resources to inform policy and regulatory decisions. The magnitudes of these environmental effects vary according to the intensity and scale of fuel production along each step of the supply chain. We compare the spatial extent and temporal duration of ethanol and gasoline production processes and environmental effects based on a literature review and then synthesize the scale differences on space-time diagrams.

Author(s):
Parish, Esther

Adding bioenergy to the U.S. energy portfolio requires long‐term profitability for bioenergy producers and
long‐term protection of affected ecosystems. In this study, we present steps along the path toward evaluating both sides of
the sustainability equation (production and environmental) for switchgrass (Panicum virgatum) using the Soil and Water
Assessment Tool (SWAT). We modeled production of switchgrass and river flow using SWAT for current landscapes at a

Land-use changes are frequently indicated to be one of the main human-induced factors influencing the groundwater system. For land-use change, groundwater research has mainly focused on the change in water quality thereby neglecting changes in quantity. The objective of this paper is to assess the impact of land-use changes, from 2000 until 2020, on the hydrological balance and in particular on groundwater quantity, as results from a case study in the Kleine Nete basin, Belgium.

Author(s):
Dams, J.

National interests in greater energy independence, concurrent with favorable market forces, have driven increased production of corn-based ethanol in the United States and research into the next generation of biofuels. The trend is changing the national agricultural landscape and has raised concerns about potential impacts on the nation?s water resources. This report examines some of the key issues and identifies opportunities for shaping policies that help to protect water resources.

Author(s):
Schnoor, Jerald

The market for E85�a fuel blend of 85 percent ethanol and 15 percent gasoline�is small
but growing rapidly. I use data for E85 sales at fueling stations in Minnesota to estimate
demand for E85 as a function of retail E85 and gasoline prices. I find that demand is
highly sensitive to price changes, with an own-price elasticity as high as -13 and a gasolineprice
elasticity as high as 16 at sample mean price levels. Demand is most sensitive to
price changes when the relative price of E85 is at an intermediate level, at which point

Author(s):
Soren Anderson

Ethanol is a very attractive fuel from an end-use perspective because it has a high chemical octane number and a high
latent heat of vaporization. When an engine is optimized to take advantage of these fuel properties, both efficiency and
power can be increased through higher compression ratio, direct fuel injection, higher levels of boost, and a reduced need
for enrichment to mitigate knock or protect the engine and aftertreatment system from overheating.

Author(s):
James Szybist
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The Energy Independence and Security Act (EISA) of 2007 established specific targets for the production of biofuel in the United States. Until advanced technologies become commercially viable, meeting these targets will increase demand for traditional agricultural commodities used to produce ethanol, resulting in land-use, production, and price changes throughout the farm sector. This report summarizes the estimated effects of meeting the EISA targets for 2015 on regional agricultural production and the environment. Meeting EISA targets for ethanol production is estimated to expand U.S.

Author(s):
Malcolm, Scott A.

We assessed current water consumption during liquid fuel production, evaluating major steps of fuel lifecycle for five fuel pathways: bioethanol from corn, bioethanol from cellulosic feedstocks, gasoline from U.S. conventional crude obtained from onshore wells, gasoline from Saudi Arabian crude, and gasoline from Canadian oil sands.

The National Hydrography Dataset (NHD) and Watershed Boundary Dataset (WBD) are used to portray surface water on The National Map. The NHD represents the drainage network with features such as rivers, streams, canals, lakes, ponds, coastline, dams, and streamgages. The WBD represents drainage basins as enclosed areas in eight different size categories. The NHD is portrayed on the US Topo map product produced by the USGS and the NHD and WBD can be viewed on the Hydrography Viewer or the general mapping oriented The National Map Viewer.

Author(s):
U.S. Geological Survey

A key objective of U.S. energy policy is to increase biofuel use by highway vehicles to 36 billion gallons per year by 2022. The Energy Independence and Security Act envisions that nearly all of this target will be met by gasohol (E10) or neat ethanol (E85). Since the market for blending ethanol with gasoline at 10% by volume will saturate at about 15 billion gallons, most of the ethanol will need to be sold in the form of E85 unless higher order blends are approved by automakers and the Environmental Protection Agency.

Author(s):
David L. Greene

One fundamental issue influencing the economic viability of the ethanol industry is consumers' demand responsiveness to both gasoline and ethanol price changes. This paper presents an alternative approach by estimating the geographic variation of price elasticity of demand for ethanol across the study area.

Author(s):
Hayk Khachatryan

In January 1976, the Transportation Energy Conservation (TEC) Division of the Energy Research and Development Administration contracted with Oak Ridge National Laboratory (ORNL) to prepare a Transportation Energy Conservation Data Book to be used by TEC staff in their evaluation of current and proposed conservation strategies. The major purposes of the Data Book were to draw together, under one cover, transportation data from diverse sources, to resolve data conflicts and inconsistencies, and to produce a comprehensive document.

The Alternative Fuels Data Center (AFDC) Station Locator identifies E-85 Fuel station locations across the country.

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.