Skip to main content

KDF Search Results

Displaying 1 - 20 of 68

Logging and mill residues are currently the largest sources of woody biomass for bioenergy in the US, but short-rotation woody crops (SRWCs) are expected to become a larger contributor to biomass production, primarily on lands marginal for food production. However, there are very few studies on the environmental effects of SRWCs, and most have been conducted at stand rather than at watershed scales.

Organization:
DOE
Author(s):
Natalie A. Griffiths , Benjamin M. Rau , Kellie B. Vache , Gregory Starr , Menberu M. Bitew , Doug P. Aubrey , James A. Martin , Elizabeth Benton , C. Rhett Jackson
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Advanced biomass feedstocks tend to provide more non-fuel ecosystem goods and services (ES) than 1st-generation alternatives. We explore the idea that payment for non-fuel ES could facilitate market penetration of advanced biofuels by closing the profitability gap. As a specific example, we discuss the Mississippi-Atchafalaya River Basin (MARB), where 1st-generation bioenergy feedstocks (e.g., corn-grain) have been integrated into the agricultural landscape.

Organization:
DOE
Author(s):
Jager, Henriette I , Efroymson, Rebecca A.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Join the U.S. Department of Energy’s Bioenergy Technologies Office on Dec. 6, 2018, at 1 p.m. CST for a webinar on “Biomass Production and Water Quality in the Mississippi River Basin.” In this webinar, Argonne National Laboratory and Oak Ridge National Laboratory will jointly present modeling and analyses of potential implications of biomass production on nutrients and sediments in each of the six tributaries of the Mississippi River Basin.

Organization:
DOE
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Model-data comparisons are always challenging, especially when working at a large spatial scale and evaluating multiple response variables. We implemented the Soil and Water Assessment Tool (SWAT) to simulate water quantity and quality for the Tennessee River Basin.

Author(s):
Gangsheng Wang
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This dataset reports the pre-treatment hydrology and pre- and post-treatment water quality data from a watershed-scale experiment that is evaluating the effects of growing short-rotation loblolly pine for bioenergy on water quality and quantity in the southeastern U.S. The experiment is taking place on the Savannah River Site, near New Ellenton, South Carolina, USA.  Beginning in 2010, water quality and hydrology were measured for two years in 3 watersheds (R, B, C).

Author(s):
Natalie A. Griffiths , C. Rhett Jackson , Jeffrey J. McDonnell , Julian Klaus , Enhao Du , Menberu M. Bitew , Allison M. Fortner , Kevin L. Fouts , Kitty McCracken , Jana R. Phillips
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This report provides a status of the markets and technology development involved in growing a domestic bioenergy economy as it existed at the end of calendar year 2013. It compiles and integrates information to provide a snapshot of the current state and historical trends influencing the development of bioenergy markets. This information is intended for policy-makers as well as technology developers and investors tracking bioenergy developments. It also highlights some of the key energy and regulatory drivers of bioenergy markets.

Author(s):
U.S. Department of Energy
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Global development of the biofuel sector is proceeding rapidly. Biofuel feedstock continues to be produced from a variety of agricultural and forestry resources. Large-scale feedstock production for biofuels could change the landscape structure and affect water quantity, water quality, and ecosystem services in positive or negative ways. With rapid advancements in computation technologies and science, field- and watershed-scale models have become a vital tool for quantifying water quality and ecosystem responses to bioenergy landscape and management practices.

Author(s):
Zhonglong Zhang , May Wu
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Using the Soil and Water Assessment Tool (SWAT) for large-scale watershed modeling could be useful for evaluating the quality of the water in regions that are dominated by nonpoint sources in order to identify potential “hot spots” for which mitigating strategies could be further developed. An analysis of water quality under future scenarios in which changes in land use would be made to accommodate increased biofuel production was developed for the Missouri River Basin (MoRB) based on a SWAT model application.

Water consumption and water quality continue to be key factors affecting environmental sustainability in biofuel production. This review covers the findings from biofuel water analyses published over the past 2 years to underscore the progress made, and to highlight advancements in understanding the interactions among increased production and water demand, water resource availability, and potential changes in water quality. We focus on two key areas: water footprint assessment and watershed modeling.

Organization:
DOE
Author(s):
May Wu , Zhonglong Zhang , Yiwen Chiu
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The compatibility of elastomeric materials used in fuel storage and dispensing applications was determined for test fuels
representing neat gasoline and gasoline blends containing 10 and 17 vol.% ethanol, and 16 and 24 vol.% isobutanol. The
actual test fuel chemistries were based on the aggressive formulations described in SAE J1681 for oxygenated gasoline.
Elastomer specimens of fluorocarbon, fluorosilicone, acrylonitrile rubber (NBR), polyurethane, neoprene, styrene

Author(s):
Michael Kass
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The compatibility of plastic materials used in fuel storage and dispensing applications was determined for test fuels representing gasoline blended with 25 vol.% ethanol and gasoline blended with 16 and 24 vol.% isobutanol. Plastic materials included those used in flexible plastic piping and fiberglass resins. Other commonly used plastic materials were also evaluated. The plastic specimens were exposed to Fuel C, CE25a, CiBu16a, and CiBu24a for 16 weeks at 60oC.

Author(s):
Michael Kass
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The increasing demand for bioenergy crops presents our society with the opportunity to design more sustainable landscapes. We have created a Biomass Location for Optimal Sustainability Model (BLOSM) to test the hypothesis that landscape design of cellulosic bioenergy crop plantings may simultaneously improve water quality (i.e. decrease concentrations of sediment, total phosphorus, and total nitrogen) and increase profits for farmer-producers while achieving a feedstock-production goal.

Author(s):
Parish, ES

This article summarises the compatibility of six elastomers – used in fuel
storage and delivery systems – with test fuels representing gasoline blended
with up to 85% ethanol. Individual coupons were exposed to test fuels for four
weeks to achieve saturation. The change in volume and hardness, when wetted
and after drying, were measured and compared with the original condition.

Author(s):
Michael Kass
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This paper estimates household preferences for ethanol as a gasoline substitute. I develop a theoretical
model linking the shape of the ethanol demand curve to the distribution of price ratios at which individual
households switch fuels. I estimate the model using data from many retail fueling stations. Demand
is price-sensitive with a mean elasticity of 2.5�3.5. I find that preferences are heterogeneous with many
households willing to pay a premium for ethanol. This reduces the simulated cost of an ethanol content

Author(s):
Soren Anderson

ABSTRACT. Adding bioenergy to the U.S. energy portfolio requires long‐term profitability for bioenergy producers and long‐term protection of affected ecosystems. In this study, we present steps along the path toward evaluating both sides of the sustainability equation (production and environmental) for switchgrass (Panicum virgatum) using the Soil and Water Assessment Tool (SWAT). We modeled production of switchgrass and river flow using SWAT for current landscapes at a regional scale.

Author(s):
Latha Baskaran

This report is an update of the original version, which was published in October 2008. This updated report includes results from the complete 16-vehicle fleet (the original report included only the first 13 vehicles tested) as well as corrections to minor errors identified in some of the originally reported data. Conclusions drawn from the complete dataset are nearly identical to those from the
original 13-vehicle fleet but with increased statistical confidence.

Author(s):
Knoll, Keith, West, Brian

We quantify the emergence of biofuel markets and its impact on U.S. and world agriculture for the coming decade using the multi-market, multi-commodity international FAPRI (Food and Agricultural Policy Research Institute) model. The model incorporates the trade-offs between biofuel, feed, and food production and consumption and international feedback effects of the emergence through world commodity prices and trade.

Author(s):
Fabiosa,Jacinto F.

The objective of the research here is to more carefully investigate the claims of localized
impacts on two fronts. The first is the impact a local ethanol plant has on the rate of agricultural
land conversion to other uses (if an ethanol plant increases the value of local agricultural land as
a result of increased commodity prices, one might expect a slower rate of conversion relative to
other communities). Second, we investigate whether the siting of an ethanol plant has had a
negative impact on local residential land values.

Author(s):
Alan Turnquist

In response to concerns about oil dependency and the contributions of fossil fuel use to climatic change, the U.S. Department of Energy has begun a research initiative to make 20% of motor fuels biofuel based in 10 years, and make 30% of fuels bio-based by 2030. Fundamental to this objective is developing an understanding of feedstock dynamics of crops suitable for cellulosic ethanol production. This report focuses on switchgrass, reviewing the existing literature from field trials across the United States, and compiling it for the first time into a single database.

Author(s):
Gunderson, Carla A.