Skip to main content

KDF Search Results

Displaying 61 - 73 of 73

The present study is a review of published investigations regarding the economy of ethanol production from lignocellulosic material. The objective is to present relations between and tendencies observed in different cost estimates. The influence of plant capacity and overall product yield on the ethanol production cost is investigated, as well as variations in capital costs in the different processes. The underlying technical and economic assumptions show a large variation between the various studies published. The variation in the ethanol production cost is large, from 18 to 151 US¢/l.

Author(s):
Margareta von Sivers

A dry-grind ethanol from corn process analysis is performed. After defining a complete model of the process, a pinch technology analysis is carried out to optimise energy and water demands. The so-defined base case is then discussed in terms of production costs and process profitability. A detailed sensitivity analysis on the most important process and financial variables is carried out. The possibility to adopt different alternatives for heat and power generation combined to the process is evaluated.

Author(s):
Giada Franceschin

Production costs of bio-ethanol from sugarcane in Brazil have declined continuously over the last three decades. The aims of this study are to determine underlying reasons behind these cost reductions, and to assess whether the experience curve concept can be used to describe the development of feedstock costs and industrial production costs. The analysis was performed using average national costs data, a number of prices (as a proxy for production costs) and data on annual Brazilian production volumes.

Author(s):
J.D. van den Wall Bake

Production of ethanol from agriculutural and forestry residues, municipal solid waste, energy crops, and other forms of lignocellulosic biomass could improve energy security, reduce trade deficits, decrease urban air pollution, and contribute little, if any, net carbon dioxide accumulation to the atmosphere. Dilute acid can open up the biomass structure for subsequent processing. The simultaneous saccharification and fermentation (SSF) process is favored for producing ethanol from the major fraction of lignocellulosic biomass, cellulose, because of its low cost potential.

Author(s):
Charles E. Wyman

In the last decade biofuel production has been driven by governmental policies. This article reviews the national strategy plans of the world’s leading producers. Particular attention is dedicated to blending targets, support schemes and feedstock use. Individual country profiles are grouped by continent and include North America (Canada and the US), South America (Argentina, Brazil, and Colombia), Europe (the European Union, France, and Germany), Asia (China, India, Indonesia, Malaysia, and Thailand) and Australia.

Author(s):
Giovanni Sorda

The important key technologies required for the successful biological conversion of lignocellulosic biomass to ethanol have been extensively reviewed. The biological process of ethanol fuel production utilizing lignocellulose as substrate requires: (1) delignification to liberate cellulose and hemicellulose from their complex with lignin, (2) depolymerization of the carbohydrate polymers (cellulose and hemicellulose) to produce free sugars, and (3) fermentation of mixed hexose and pentose sugars to produce ethanol.

Author(s):
Jeewon Lee

In this article the environmental and socio-economical impacts of the production of ethanol from sugarcane in the state of São Paulo (Brazil) are evaluated. Subsequently, an attempt is made to determine to what extent these impacts are a bottleneck for a sustainable and certified ethanol production. Seventeen environmental and socio-economic areas of concern are analysed.

Author(s):
Edward Smeets

Since the mid-1990s there has been a growing worldwide interest in alternative transport fuels, of which ethanol is among the most promising options. This interest has in recent years gathered pace, stimulated by high oil prices and the generally perceived view that this trend is likely to accentuate in the future. The need to reduce GHG emissions is also a fundamental reason for this interest. The focus of this paper is on fuel ethanol production from sugar and starches with emphasis on short-term issues and implications for the global market.

Author(s):
Frank Rosillo-Calle

The rapidly expanding biofuel industry has changed the fundamentals of U.S. agricultural commodity markets. Increasing ethanol and biodiesel production has generated a fast-growing demand for corn and soybean products, which competes with the well-established domestic livestock industry and foreign buyers. Meanwhile, the co-products of biofuel production are replacing or displacing coarse grains and oilseed meal in feed rations for livestock.

Author(s):
Tun-Hsiang (Edward) Yu

There is a strong societal need to evaluate and understand the sustainability of biofuels, especially because of the significant increases in production mandated by many countries, including the United States. Sustainability will be a strong factor in the regulatory environment and investments in biofuels. Biomass feedstock production is an important contributor to environmental, social, and economic impacts from biofuels.

Author(s):
Gayathri Gopalakrishnan

Supply chain management involves all of the activities in industrial organizations from raw material procurement to final product delivery to customers. The main aim in supply chain management is to satisfy production requirements, while optimizing the economic objectives. In traditional fossil fuel supply chains, huge amounts of fossil fuels are transported via pipelines or tankers with very small costs. These fuels can be transformed into other sources of energy or transportation fuels at their destination points.

Author(s):
Ahu Soylu

A method is presented, which estimates the potential for power production from agriculture residues. A GIS decision support system (DSS) has been developed, which implements the method and provides the tools to identify the geographic distribution of the economically exploited biomass potential. The procedure introduces a four level analysis to determine the
theoretical, available, technological and economically exploitable potential. The DSS handles all possible restrictions and

Author(s):
D. Voivontas

For several years the Idaho National Laboratory (INL) has been developing a Decision Support System for Agriculture (DSS4Ag) which determines the economically optimum recipe of various fertilizers to apply at each site in a field to produce a crop, based on the existing soil fertility at each site, as well as historic production information and current prices of fertilizers and the forecast market price of the crop at harvest.

Author(s):
Hoskinson Reed L.