Skip to main content

KDF Search Results

Displaying 1 - 20 of 36

Link to the website with documentation and download instructions for the PNNL Global Change Assessment Model (GCAM), a community model or long-term, global energy, agriculture, land use, and emissions. BioEnergy production, transformation, and use is an integral part of GCAM modeling and scenarios.

http://jgcri.github.io/gcam-doc/

Author(s):
Marshall Wise
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Abstract: Cellulosic-based biofuels are needed to help meet energy needs and to strengthen rural investment and development in the midwestern United States (US). This analysis identifies 11 categories of indicators to measure progress toward sustainability that should be monitored to determine if ecosystem and social services are being maintained, enhanced, or disrupted by production, harvest, storage, and transport of cellulosic feedstock.

Author(s):
Virginia H. Dale , Keith L. Kline , Tom L. Richard , Doug L. Karlen
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

There is an inextricable link between energy production and food/feed/fiber cultivation with available water resources. Currently in the United States, agriculture represents the largest sector of consumptivewater usemaking up 80.7%of the total. Electricity generation in the U.S. is projected to increase by 24 % in the next two decades and globally, the production of liquid transportation fuels are forecasted to triple over the next 25-years, having significant impacts on the import/export market and global economies.

Author(s):
Brandon C. Moore
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The Bioenergy Technologies Office hosted a workshop on Incorporating Bioenergy into Sustainable Landscape Designs on June 24-26 in partnership with Argonne and Oak Ridge National Laboratories. Landscape design offers a promising means for sustainably increasing bioenergy production while maintaining or enhancing other ecosystem services.

Author(s):
Bioenergy Technologies Office
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The Bioenergy Technologies Office hosted two workshops on Incorporating Bioenergy into Sustainable Landscape Designs with Oak Ridge and Argonne National Laboratories. The first workshop focused on forestry landscapes and was held in New Bern, NC, from March 4-6, 2014. The second workshop focused on agricultural landscapes and was held in Argonne, IL, from June 24-26, 2014. Landscape design offers a promising means for sustainably increasing bioenergy production while maintaining or enhancing other ecosystem services.

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The Bioenergy Technologies Office hosted a workshop on Incorporating Bioenergy into Sustainable Landscape Designs on March 4-6 in partnership with Oak Ridge and Argonne National Laboratories. Landscape design offers a promising means for sustainably increasing bioenergy production while maintaining or enhancing other ecosystem services.

Author(s):
Bioenergy Technologies Office
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The increasing demand for bioenergy crops presents our society with the opportunity to design more sustainable landscapes. We have created a Biomass Location for Optimal Sustainability Model (BLOSM) to test the hypothesis that landscape design of cellulosic bioenergy crop plantings may simultaneously improve water quality (i.e. decrease concentrations of sediment, total phosphorus, and total nitrogen) and increase profits for farmer-producers while achieving a feedstock-production goal.

Author(s):
Parish, ES

Defining and measuring sustainability of bioenergy systems are difficult because the systems are complex, the science is in early stages of development, and there is a need to generalize what are inherently contextspecific enterprises. These challenges, and the fact that decisions are being made now, create a need for improved communications among scientists as well as between scientists and decision makers.

Author(s):
Virginia H. Dale

Landscape implications of bioenergy feedstock choices are significant and depend on land-use practices and their environmental impacts. Although land-use changes and carbon emissions associated with bioenergy feedstock production are dynamic and complicated, lignocellulosic feedstocks may offer opportunities that enhance sustainability when compared to other transportation fuel alternatives.

Author(s):
Virginia H. Dale

A primary objective of current U.S. biofuel law – the “Energy Independence and Security Act of 2007” (EISA) – is to reduce dependence on imported oil, but the law also requires biofuels to meet carbon emission reduction thresholds relative to petroleum fuels. EISA created a renewable fuel standard with annual targets for U.S. biofuel use that climb gradually from 9 billion gallons per year in 2008 to 36 billion gallons (or about 136 billion liters) of biofuels per year by 2022. The most controversial aspects of U.S.

Author(s):
Keith L. Kline , Gbadebo Oladosu

The generation of electricity, and the consumption of energy in general, often result in adverse effects on the environment. Coal-fired power plants generate over half of the electricity used in the U.S., and therefore play a significant role in any discussion of energy and the environment. By cofiring biomass, currently-operating coal plants have an opportunity to reduce the impact they have, but to what degree, and with what trade-offs? A life cycle assessment (LCA) has been conducted on a coal-fired power system that cofires wood residue.

Author(s):
Spath, Pam

This model was developed at Idaho National Laboratory and focuses on crop production. This model is an agricultural cultivation and production model, but can be used to estimate biomass crop yields.

Author(s):
Hoskinson, R.L.

Coal has the largest share of utility power generation in the U.S., accounting for approximately 56% of all utility-produced electricity (U.S. DOE, 1998). Therefore, understanding the environmental implications of producing electricity from coal is an important component of any plan to reduce total emissions and resource consumption.

Author(s):
Spath, Pam

To determine the environmental implications of producing electricity from biomass and coal, life cycle assessments (LCA) have been conducted on systems based on three power generation options: (1) a biomass-fired integrated gasification combined cycle (IGCC) system, (2) three coal-fired power plant technologies, and (3) a system cofiring waste biomass with coal.

Author(s):
Spath, Pam

Biodiesel is a renewable diesel fuel substitute that can be made by chemically combining any natural oil or fat with an alcohol such as methanol or ethanol. Methanol has been the most commonly used alcohol in the commercial production of biodiesel. In Europe, biodiesel is widely available in both its neat form (100% biodiesel, also known as B100) and in blends with petroleum diesel. Most European biodiesel is made from rapeseed oil (a cousin of canola oil).

Author(s):
Sheehan, John

Human actions are altering the terrestrial environment at unprecedented rates, magnitudes, and spatial scales. Landcover change stemming from human land uses represents a major source and a major element of global environmental change. Not only are the global-level data on landuse and land-cover change relatively poor, but we need a much better understanding of the underlying driving forces for these changes. Many forces have been proposed as significant, but single-factor explanations of land transformation have proved to be inadequate.

Author(s):
Turner,B.L.