Skip to main content

KDF Search Results

Displaying 1 - 20 of 56

The Food and Agricultural Policy Research Institute (FAPRI) is a unique, dual-university research program. With research centers at the Center for Agricultural and Rural Development (CARD) at Iowa State University and the Center for National Food and Agricultural Policy (CNFAP) at the University of Missouri-Columbia, FAPRI uses comprehensive data and computer modeling systems to analyze the complex economic interrelationships of the food and agriculture industry.

FAPRI Models:

Author(s):
The Food and Agricultural Policy Research Institute (FAPRI)

Quantifying lignin and carbohydrate composition of corn (Zea mays L.) is important to support the emerging cellulosic biofuels industry. Therefore, field studies with 0 or 100 % stover removal were established in Alabama and South Carolina as part of the Sun Grant Regional Partnership Corn Stover Project. In Alabama, cereal rye (Secale cereale L.) was also included as an additional experimental factor, serving as a winter cover crop.

Author(s):
Spyridon Mourtzinis , Keri B. Cantrell , Francisco J. Arriaga , Kipling S. Balkcom , Jeff M. Novak , James R. Frederick , Douglas L. Karlen

Vimmerstedt, L. J., Bush, B. W., Hsu, D. D., Inman, D. and Peterson, S. O. (2014), Maturation of biomass-to-biofuels conversion technology pathways for rapid expansion of biofuels production: a system dynamics perspective. Biofuels, Bioprod. Bioref.. doi: 10.1002/bbb.1515
 
 
To explore this file download Tableau reader: http://www.tableausoftware.com/products/reader

Author(s):
NREL

A global energy crop productivity model that provides geospatially explicit quantitative details on biomass
potential and factors affecting sustainability would be useful, but does not exist now. This study describes a
modeling platform capable of meeting many challenges associated with global-scale agro-ecosystem modeling.
We designed an analytical framework for bioenergy crops consisting of six major components: (i) standardized
natural resources datasets, (ii) global field-trial data and crop management practices, (iii) simulation units and

Author(s):
SHUJIANG KANG
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Biomass Scenario Model: Supplemental Tableau workbook for Christopher M Clark et al 2013 Environ. Res. Lett. 8 025016 doi:10.1088/1748-9326/8/2/025016 Growing a sustainable biofuels industry: economics, environmental considerations, and the role of the Conservation Reserve Program

To explore this file download Tableau reader: http://www.tableausoftware.com/products/reader

Many questions have surfaced regarding short-and long-term impacts of corn (Zea mays L.) residue removal for use in the biofuels industry. To address these concerns, a field study was established in eastern South Dakota in 2000 using no-till soil management within a 2-yr corn/soybean [Glycine max (L.) Merr.] rotation.

Author(s):
Amber L. Hammerbeck , Sarah J. Stetson , Shannon L. Osborne , Joseph L. Pikul

In support of the national goals for biofuel use in the United States, numerous technologies have been developed that convert biomass to biofuels. Some of these biomass to biofuel conversion technology pathways are operating at commercial scales, while others are in earlier stages of development. The advancement of a new pathway toward commercialization involves various types of progress, including yield improvements, process engineering, and financial performance.

Author(s):
Laura J. Vimmerstedt , Brian W. Bush
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The use of corn for ethanol production in the United States quintupled between 2001 and 2009, generating concerns that this could lead to the conversion of forests and grasslands around the blobe, known as indirect land-use change (iLUC). Estimates of iLUC and related "food versus fuel" concerns rest on the assumption that the corn used for ethanol production in the United States would come primarily from displacing corn exports and land previously used for other crops.

Author(s):
Gbadebo Oladosu , Keith Kline , Rocio Uria-Martinez , Laurence Eaton

We quantify the emergence of biofuel markets and its impact on U.S. and world agriculture for the coming decade using the multi-market, multi-commodity international FAPRI (Food and Agricultural Policy Research Institute) model. The model incorporates the trade-offs between biofuel, feed, and food production and consumption and international feedback effects of the emergence through world commodity prices and trade.

Author(s):
Fabiosa,Jacinto F.

IMPACT – the International Model for Policy Analysis of Agricultural Commodities and Trade – was developed at IFPRI at the beginning of the 1990s, upon the realization that there was a lack of long-term vision and consensus among policy makers and researchers about the actions that are necessary to feed the world in the future, reduce poverty, and protect the natural resource base. In 1993, these same long-term global concerns launched the 2020 Vision for Food, Agriculture and the Environment Initiative.

Author(s):
Rosegrant, Mark W.

Agricultural activities have dramatically altered our planet?s land surface. To understand the extent and spatial distribution of these changes, we have developed a new global data set of croplands and pastures circa 2000 by combining agricultural inventory data and satellite-derived land cover data. The agricultural inventory data, with much greater spatial detail than previously available, is used to train a land cover classification data set obtained by merging two different satellite-derived products (Boston University?s MODIS-derived land cover product and the GLC2000 data set).

Author(s):
Ramankutty, Navin

Growing concern about climate change and energy security has led to increasing interest in developing renewable, domestic energy sources for meeting electricity, heating and fuel needs in the United States. Illinois has significant potential to produce bioenergy crops, including corn, soybeans, miscanthus (Miscanthus giganteus), and switchgrass (Panicum virgatum). However, land requirements for bioenergy crops place them in competition with more traditional agricultural uses, in particular food production.

Author(s):
Scheffran, Jurgen

Discussions of alternative fuel and propulsion technologies for transportation often overlook the infrastructure required to make these options practical and cost-effective. We estimate ethanol production facility locations and use a linear optimization model to consider the economic costs of distributing various ethanol fuel blends to all metropolitan areas in the United States. Fuel options include corn-based E5 (5% ethanol, 95% gasoline) to E16 from corn and switchgrass, as short-term substitutes for petroleum-based fuel.

Author(s):
William R. Morrow

The Emissions Prediction and Policy Analysis (EPPA) model is the part of the MIT Integrated Global Systems Model (IGSM) that represents the human systems. EPPA is a recursive-dynamic multi-regional general equilibrium model of the world economy, which is built on the GTAP dataset and additional data for the greenhouse gas and urban gas emissions. It is designed to develop projections of economic growth and anthropogenic emissions of greenhouse related gases and aerosols. The main purpose of this report is to provide documentation of a new version of EPPA, EPPA version 4.

Author(s):
Paltsev Sergey

Land-use change models are important tools for integrated environmental management. Through scenario analysis they can help to identify near-future critical locations in the face of environmental change. A dynamic, spatially explicit, land-use change model is presented for the regional scale: CLUE-S. The model is specifically developed for the analysis of land use in small regions (e.g., a watershed or province) at a fine spatial resolution.

Author(s):
Verburg,P.H.

Land use change models are tools to support the analysis of the causes and consequences of land use dynamics. Scenario analysis with land use models can support land use planning and policy. Numerous land use models are available, developed from different disciplinary backgrounds. This paper reviews current models to identify priority issues for future land use change modelling research.

Author(s):
Verburg, Peter H.

A methodology was developed to estimate quantities of crop residues that can be removed while maintaining rain or wind erosion at less than or equal to the tolerable soil-loss level. Six corn and wheat rotations in the 10 largest corn-producing states were analyzed. Residue removal rates for each rotation were evaluated for conventional, mulch/reduced, and no-till field operations.

Author(s):
Nelson, Richard G

Land-use change models are used by researchers and professionals to explore the dynamics and drivers of land-use/land-cover change and to inform policies affecting such change. A broad array of models and modeling methods are available to researchers, and each type has certain advantages and disadvantages depending on the objective of the research. This report presents a review of different types of models as a means of exploring the functionality and ability of different approaches.

Author(s):
Agarwal,Chetan