Skip to main content

KDF Search Results

Displaying 1 - 20 of 44

There is an inextricable link between energy production and food/feed/fiber cultivation with available water resources. Currently in the United States, agriculture represents the largest sector of consumptivewater usemaking up 80.7%of the total. Electricity generation in the U.S. is projected to increase by 24 % in the next two decades and globally, the production of liquid transportation fuels are forecasted to triple over the next 25-years, having significant impacts on the import/export market and global economies.

Author(s):
Brandon C. Moore
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Quantifying lignin and carbohydrate composition of corn (Zea mays L.) is important to support the emerging cellulosic biofuels industry. Therefore, field studies with 0 or 100 % stover removal were established in Alabama and South Carolina as part of the Sun Grant Regional Partnership Corn Stover Project. In Alabama, cereal rye (Secale cereale L.) was also included as an additional experimental factor, serving as a winter cover crop.

Author(s):
Spyridon Mourtzinis , Keri B. Cantrell , Francisco J. Arriaga , Kipling S. Balkcom , Jeff M. Novak , James R. Frederick , Douglas L. Karlen

We quantify the emergence of biofuel markets and its impact on U.S. and world agriculture for the coming decade using the multi-market, multi-commodity international FAPRI (Food and Agricultural Policy Research Institute) model. The model incorporates the trade-offs between biofuel, feed, and food production and consumption and international feedback effects of the emergence through world commodity prices and trade.

Author(s):
Fabiosa,Jacinto F.

In this paper we investigate the potential production and implications of a global biofuels industry. We develop alternative approaches to the introduction of land as an economic factor input, in value and physical terms, into a computable general equilibrium framework. Both approach allows us to parameterize biomass production in a manner consistent with agro-engineering information on yields and a ?second generation? cellulosic biomass conversion technology.

Author(s):
Gurgel, Angelo

The preceding two chapters of this volume have discussed physical and economic data bases for global agriculture and forestry, respectively. These form the foundation for the integrated, global land use data base discussed in this chapter. However, in order to utilize these data for global CGE analysis, it is first necessary to integrate them into a global, general equilibrium data base. This integration is the subject of the present chapter

Author(s):
Huey-Lin Lee

Discussions of alternative fuel and propulsion technologies for transportation often overlook the infrastructure required to make these options practical and cost-effective. We estimate ethanol production facility locations and use a linear optimization model to consider the economic costs of distributing various ethanol fuel blends to all metropolitan areas in the United States. Fuel options include corn-based E5 (5% ethanol, 95% gasoline) to E16 from corn and switchgrass, as short-term substitutes for petroleum-based fuel.

Author(s):
William R. Morrow

This paper describes the GTAP land use data base designed to support integrated assessments of the potential for greenhouse gas mitigation. It disaggregates land use by agro-ecological zone (AEZ). To do so, it draws upon global land cover data bases, as well as state-of-the-art definition of AEZs from the FAO and IIASA. Agro-ecological zoning segments a parcel of land into smaller units according to agro-ecological characteristics, including: precipitation, temperature, soil type, terrain conditions, etc. Each zone has a similar combination of constraints and potential for land use.

Author(s):
Huey-Lin Lee

The paper describes the on-going project of the GTAP land use data base. We also present the GTAPE-AEZ model, which illustrates how land use and land-based emissions can be incorporated in the CGE framework for Integrated Assessment (IA) of climate change policies. We follow the FAO fashion of agro-ecological zoning (FAO, 2000; Fischer et al, 2002) to identify lands located in six zones. Lands located in a specific AEZ have similar (or homogenous) soil, landform and climatic characteristics.

Author(s):
Lee, Huey-Lin

This report discusses the development of greenhouse gas (GHG) emissions estimates for the production of Fischer-Tropsch (FT) derived fuels (in particular, FT diesel), makes comparisons of these estimates to reported literature values for petroleum-derived diesel, and outlines strategies for substantially reducing these emissions.

Author(s):
Marano, John J.

This model was developed at Idaho National Laboratory and focuses on crop production. This model is an agricultural cultivation and production model, but can be used to estimate biomass crop yields.

Author(s):
Hoskinson, R.L.

Biodiesel is a renewable diesel fuel substitute. It can be made from a variety of natural oils and fats. Biodiesel is made by chemically combining any natural oil or fat with an alcohol such as methanol or ethanol. Methanol has been the most commonly used alcohol in the commercial production of biodiesel. In Europe, biodiesel is widely available in both its neat form (100% biodiesel, also know as B100) and in blends with petroleum diesel. European biodiesel is made predominantly from rapeseed oil (a cousin of canola oil).

Author(s):
Sheehan, J.

Increasing demand for crop-based biofuels, in addition to other human drivers of land use, induces direct and indirect land use changes (LUC). Our system dynamics tool is intended to complement existing LUC modeling approaches and to improve the understanding of global LUC drivers and dynamics by allowing examination of global LUC under diverse scenarios and varying model assumptions. We report on a small subset of such analyses.

ABSTRACT: A growing number of countries are implementing greenhouse gas (GHG) emissions trading schemes. As these schemes impose a cost for GHG emissions they should increase the competitiveness of low carbon fuels. Bioenergy from biomass is regarded as carbon neutral in most of the schemes, therefore incurring no emission costs. Emissions trading schemes may therefore encourage increased use of biomass for energy, and under certain conditions may also incentivize the construction of new bioenergy plants.

EXECUTIVE SUMMARY: Life cycle assessment (LCA) is a powerful tool that may be used to quantify the environmental impacts of products and services. It includes all processes, from cradle-to-grave, along the supply chain of the product. When analysing energy systems, greenhouse gas (GHG) emissions (primarily CO2, CH4 and N2O) are the impact of primary concern. In using LCA to determine the climate change mitigation benefits of bioenergy, the life cycle emissions of the bioenergy system are compared with the emissions for a reference energy system.

Despite a rapid worldwide expansion of the biofuel industry, there is a lack of consensus within the scientific community about the potential of biofuels to reduce reliance on petroleum and decrease greenhouse gas (GHG) emissions. Although life cycle assessment provides a means to quantify these potential benefits and environmental impacts, existing methods limit direct comparison within and between different biofuel systems because of inconsistencies in performance metrics, system boundaries, and underlying parameter values.