Skip to main content

KDF Search Results

Displaying 1 - 19 of 19

Vimmerstedt, L. J., Bush, B. W., Hsu, D. D., Inman, D. and Peterson, S. O. (2014), Maturation of biomass-to-biofuels conversion technology pathways for rapid expansion of biofuels production: a system dynamics perspective. Biofuels, Bioprod. Bioref.. doi: 10.1002/bbb.1515
 
 
To explore this file download Tableau reader: http://www.tableausoftware.com/products/reader

Author(s):
NREL

Understanding the development of the biofuels industry in the United States is important to policymakers and industry. The Biomass Scenario Model (BSM) is a system dynamics model of the biomass-to-biofuels system that can be used to explore policy effects on biofuels development. Because of the complexity of the model, as well as the wide range of possible future conditions that affect biofuels industry development, we have not developed a single reference case but instead developed a set of specific scenarios that provide various contexts for our analyses.

Author(s):
Inman, D.; Vimmerstedt, L.; Bush, B.; Peterson, S.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Biomass Scenario Model: Supplemental Tableau workbook for Christopher M Clark et al 2013 Environ. Res. Lett. 8 025016 doi:10.1088/1748-9326/8/2/025016 Growing a sustainable biofuels industry: economics, environmental considerations, and the role of the Conservation Reserve Program

To explore this file download Tableau reader: http://www.tableausoftware.com/products/reader

This paper describes the current Biomass Scenario Model (BSM) as of August 2013, a system dynamics model developed under the support of the U.S. Department of Energy (DOE). The model is the result of a multi-year project at the National Renewable Energy Laboratory (NREL). It is a tool designed to better understand biofuels policy as it impacts the development of the supply chain for biofuels in the United States.

Author(s):
Peterson, Steve

In support of the national goals for biofuel use in the United States, numerous technologies have been developed that convert biomass to biofuels. Some of these biomass to biofuel conversion technology pathways are operating at commercial scales, while others are in earlier stages of development. The advancement of a new pathway toward commercialization involves various types of progress, including yield improvements, process engineering, and financial performance.

Author(s):
Laura J. Vimmerstedt , Brian W. Bush
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Agricultural activities have dramatically altered our planet?s land surface. To understand the extent and spatial distribution of these changes, we have developed a new global data set of croplands and pastures circa 2000 by combining agricultural inventory data and satellite-derived land cover data. The agricultural inventory data, with much greater spatial detail than previously available, is used to train a land cover classification data set obtained by merging two different satellite-derived products (Boston University?s MODIS-derived land cover product and the GLC2000 data set).

Author(s):
Ramankutty, Navin

Growing concern about climate change and energy security has led to increasing interest in developing renewable, domestic energy sources for meeting electricity, heating and fuel needs in the United States. Illinois has significant potential to produce bioenergy crops, including corn, soybeans, miscanthus (Miscanthus giganteus), and switchgrass (Panicum virgatum). However, land requirements for bioenergy crops place them in competition with more traditional agricultural uses, in particular food production.

Author(s):
Scheffran, Jurgen

Biomass is receiving increasing attention as scientists, policy makers, and growers search for clean, renewable energy alternatives. Compared with other renewable resources, biomass is very flexible it can be used as fuel for direct combustion, gasified, used in combined heat and power technologies, or biochemical conversions. Due to the wide range of feedstocks, biomass has a broad geographic distribution, in some cases offering a least-cost and near-term alternative. The objective of this research is to estimate the biomass resources available in the United States and map the results.

Author(s):
A. Milbrandt

Land-use change models are important tools for integrated environmental management. Through scenario analysis they can help to identify near-future critical locations in the face of environmental change. A dynamic, spatially explicit, land-use change model is presented for the regional scale: CLUE-S. The model is specifically developed for the analysis of land use in small regions (e.g., a watershed or province) at a fine spatial resolution.

Author(s):
Verburg,P.H.

Biomass Scenario Model Zotero References
National Renewable Energy Laboratory

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Increasing demand for crop-based biofuels, in addition to other human drivers of land use, induces direct and indirect land use changes (LUC). Our system dynamics tool is intended to complement existing LUC modeling approaches and to improve the understanding of global LUC drivers and dynamics by allowing examination of global LUC under diverse scenarios and varying model assumptions. We report on a small subset of such analyses.

Traffic flows in the U.S. have been affected by the substantial increase and, as of January 2009, decrease in biofuel production and use. This paper considers a framework to study the effect on grain transportation flows of the 2005 Energy Act and subsequent legislation, which mandated higher production levels of biofuels, e.g. ethanol and biodiesels. Future research will incorporate changes due to the recent economic slowdown.

Author(s):
Ahmedov, Zarabek

Agricultural markets often feature significant transport costs and spatially distributed production and processing which causes spatial imperfect competition. Spatial economics considers the firms’ decisions regarding location and spatial price strategy separately, usually on the demand side, and under restrictive assumptions. Therefore, alternative approaches are needed to explain, e.g., the location of new ethanol plants in the U.S. at peripheral as well as at central locations and the observation of different spatial price strategies in the market.

Author(s):
Graubner, Marten

FAOSTAT provides time-series and cross sectional data relating to food and agriculture for some 200 countries.

The national version of FAOSTAT, CountrySTAT, is being developed and implemented in a number of target countries, primarily in sub-saharan Africa. It will offer a two-way data exchange facility between countries and FAO as well as a facility to store data at the national and sub-national levels.

Author(s):
FAO

This database contains current and historical official USDA data on production, supply and distribution of agricultural commodities for the United States and key producing and consuming countries.

Author(s):
USDA Foreign Agriculture Service

The U.S. Geological Survey (USGS) 2001 National Land Cover Database (NLCD) was compared to the U.S. Department of Agriculture (USDA) 2002 Census of Agriculture. Wecompared areal estimates for cropland at the state and county level for 14 States in the Upper Midwest region of the United States. Absolute differences between the NLCD and Census cropland areal estimates at the state level ranged from 1.3% (Minnesota) to 37.0% (Wisconsin). The majority of counties (74.5%) had differences of less than 100 km2. 7.2% of the counties had differences of more than 200 km2.

Author(s):
Maxwell, S.K.

When fuelwood is harvested at a rate exceeding natural growth and inefficient conversion technologies are used, negative environmental and socio-economic impacts, such as fuelwood shortages, natural forests degradation and net GHG emissions arise. In this study, we argue that analyzing fuelwood supply/demand spatial patterns require multiscale approaches to effectively bridge the gap between national results with local situations.

Author(s):
Ghilardi,Adria?n

Ground-based data on crop production in the USA is provided through surveys conducted by the National Agricultural Statistics Service (NASS) and the Census of Agriculture (AgCensus). Statistics from these surveys are widely used in economic analyses, policy design, and for other purposes. However, missing data in the surveys presents limitations for research that requires comprehensive data for spatial analyses.We created comprehensive county-level databases for nine major crops of the USA for a 16-yr period, by filling the gaps in existing data reported by NASS and AgCensus.

Author(s):
Erandathie ,Lokupitiya

This paper describes a methodology to explore the (future) spatial distribution of biofuel crops in Europe. Two main types of biofuel crops are distinguished: biofuel crops used for the production of biodiesel or bioethanol, and second-generation biofuel crops. A multiscale, multi-model approach is used in which biofuel crops are allocated over the period 2000?2030. The area of biofuel crops at the national level is determined by a macroeconomic model. A spatially explicit land use model is used to allocate the biofuel crops within the countries.

Author(s):
Hellman,Fritz