Skip to main content

KDF Search Results

Displaying 81 - 100 of 111

This working paper contains proposals for specific genetic criteria and indicators (C&I) which are expected to be part of a more general set of biological C&I. These proposals are intended for use in guiding tropical forest management but the indicators and verifiers we describe are not in the form of simple prescriptions where a single measurement can be recommended for a single causal effect.

Author(s):
Namkoong, G. , Boyle, T.J.B. , Gregorius, H.-R. , Joly, H. , Savolainen, O. , Ratnam, W. , Young, A.

In 2013 a series of meetings was held across the US with each of the Sun Grant Regional Feedstock Partnership crop teams and the resource assessment team, led by the Oregon State University and Oak Ridge National Laboratory, to review, standardize, and verify energy crop yield trials from 2007-2012 and assimilate their outcomes into a national model of biomass yield suitability.

This document provides presentation style maps of potential crop yield of dedicated bioenergy crops from the publication "Productivity Potential of Bioenergy Crops from the Sun Grant Regional Feedstock Partnership." 2013. Eaton, Laurence, Chris Daly, Mike Halbleib, Vance Owens, Bryce Stokes. ORNL/TM-2013/574.

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The U.S. biomass resource can be used several ways that provide domestic, renewable energy to users. Understanding the capacity of the biomass resource, its potential in energy markets, and the most economic utilization of biomass is important in policy development and project selection. This study analyzed the potential for biomass within markets and the competition between them.

Organization:
DOE

Background: This study evaluates the global economic effects of the current US RFS2, and the potential contribution from advanced biofuels. Results & discussion: Our simulation results suggest that these mandates lead to an increase of 0.21% in the global gross domestic product in 2022, including an increase of 0.8% in the USA and 0.02% in the rest of the world, relative to our baseline no-RFS scenario. The incremental contributions to gross domestic product from advanced biofuels in 2022 are estimated at 0.41 and 0.04% in the USA and the rest of the world, respectively.

Author(s):
Keith L Kline , Rocio Martinez , Paul N. Leiby , Virginia H Dale , Maggie Davis , Laurence M Eaton , Mark Downing
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Interest in using biomass feedstocks to produce power, liquid fuels, and chemicals in the U.S. is increasing. Central to determining the potential for these industries to develop is an understanding of the location, quantities, and prices of biomass resources. This paper describes the methodology used to estimate biomass quantities and prices for each state in the continental U.S. An Excel™ spreadsheet contains estimates of biomass quantities potentially available in five categories: mill wastes, urban wastes, forest residues, agricultural residues and energy crops.

In response to energy security concerns, alternative energy programs such as biomass energy systems are being
developed to provide energy in the 21st century. For the biomass industry to expand, a variety of feedstocks will need
to be utilized. Large scale production of bioenergy crops could have significant impacts on the United States agricultural
sector in terms of quantities, prices and production location of traditional crops as well as farm income. Though

The IPCC SRREN report addresses information needs of policymakers, the private sector and civil society on the potential of renewable energy sources for the mitigation of climate change, providing a comprehensive assessment of renewable energy technologies and related policy and financial instruments. The IPCC report was a multinational collaboration and synthesis of peer reviewed information: Reviewed, analyzed, coordinated, and integrated current high quality information.

Switchgrass (Panicum virgatum L.) is a perennial grass native to the United States that has been studied as a sustainable source of biomass fuel. Although many field-scale studies have examined the potential of this grass as a bioenergy crop, these studies have not been integrated. In this study, we present an empirical model for switchgrass yield and use this model to predict yield for the conterminous United States. We added environmental covariates to assembled yield data from field trials based on geographic location. We developed empirical models based on these data.

Author(s):
Henriette I. Jager , Latham M. Baskaran , Craig C. Brandt , Ethan B. Davis , Carla A. Gunderson , Stan D. Wullschleger

The Energy Independence and Security Act (EISA) of 2007 established specific targets for the production of biofuel in the United States. Until advanced technologies become commercially viable, meeting these targets will increase demand for traditional agricultural commodities used to produce ethanol, resulting in land-use, production, and price changes throughout the farm sector. This report summarizes the estimated effects of meeting the EISA targets for 2015 on regional agricultural production and the environment. Meeting EISA targets for ethanol production is estimated to expand U.S.

Author(s):
Malcolm, Scott A.

This paper examines the impact of biofuel expansion on grain utilization and distribution at the state and cropping district level as most of grain producers and handlers are directly influenced by the local changes. We conducted a survey to understand the utilization and flows of corn, ethanol and its co-products, such as dried distillers grains (DDG) in Iowa. Results suggest that the rapidly expanding ethanol industry has a significant impact on corn utilization in Iowa.

Author(s):
Yu, Tun-Hsiang (Edward)

This paper introduces a spatial bioeconomic model for study of potential cellulosic biomass supply at regional scale. By modeling the profitability of alternative crop production practices, it captures the opportunity cost of replacing current crops by cellulosic biomass crops. The model draws upon biophysical crop input-output coefficients, price and cost data, and spatial transportation costs in the context of profit maximization theory. Yields are simulated using temperature, precipitation and soil quality data with various commercial crops and potential new cellulosic biomass crops.

Author(s):
Egbendewe-Mondzozo, Aklesso

When the lignocellulosic biofuels industry reaches maturity and many types of biomass sources become economically viable, management of multiple feedstock supplies – that vary in their yields, density (tons per unit area), harvest window, storage and seasonal costs, storage losses, transport distance to the production plant – will become increasingly important for the success of individual enterprises. The manager’s feedstock procurement problem is modeled as a multi-period sequence problem to account for dynamic management over time.

Author(s):
Kumarappan, Subbu

In the corn ethanol industry, the ability of plants to obtain favorable prices through marketing decisions is considered important for their overall economic performance. Based on a panel of surveyed of ethanol plants we extend data envelopment analysis (DEA) to decompose the economic efficiency of plants into conventional sources (technical and allocative efficiency) and a new component we call marketing efficiency.

Author(s):
Sesmero, Juan S.

One of the major objectives of the current expansion in bioenergy cropping is to reduce global greenhouse gas emissions for environmental benefit. The cultivation of bioenergy and biofuel crops also affects biodiversity more directly, both positively and negatively.

Author(s):
Les G. Firbank

The purpose of this study is to analyse the economical and environmental performance of switchgrass and miscanthus production and supply chains in the European Union (EU25), for the years 2004 and 2030. The environmental performance refers to the greenhouse gas (GHG) emissions, the primary fossil energy use and to the impact on fresh water reserves, soil erosion and biodiversity. Analyses are carried out for regions in five countries.

Author(s):
Edward M.W. Smeets