Skip to main content

KDF Search Results

Displaying 41 - 60 of 132

The compatibility of elastomer materials used in fuel storage and dispensing applications was determined for an off-highway diesel
fuel and a blend containing 20% bio-oil (Bio20) derived from a fast pyrolysis process. (This fuel blend is not to be confused with B20,
which is a blend of diesel fuel with 20% biodiesel.) The elastomer types evaluated in this study included fluorocarbon, fluorosilicone,
acrylonitrile rubber (NBR), styrene butadiene rubber (SBR), polyurethane, neoprene, and silicone. All of these elastomer types are

Author(s):
Michael Kass
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Understanding the environmental effects of alternative fuel production is critical to characterizing the sustainability of energy resources to inform policy and regulatory decisions. The magnitudes of these environmental effects vary according to the intensity and scale of fuel production along each step of the supply chain. We compare the spatial extent and temporal duration of ethanol and gasoline production processes and environmental effects based on a literature review and then synthesize the scale differences on space-time diagrams.

Organization:
DOE
Author(s):
Parish ES , Kline KL , Dale VH , Efroymson RA , McBride AC , Johnson TL , Hilliard MR , Bielicki JM
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This paper presents a generic approach for selecting sustainability criteria and indicators (C&I) by using a participatory methodology. Selecting appropriate C&I to assess the sustainability of projects or developments is crucial and significantly influences the assessment results. The methodology, which consists of two processes: a pre-selection of suitable C&I by the researchers and a final selection by regional bioenergy experts in a multi-stakeholder forum, was applied in a Scottish region (Tayside & Fife).

Author(s):
Thomas Kurka , David Blackwood

The major challenges for humanity include energy security, food security, climate change, and a growing world population. They are all linked together by an instinctive, and yet increasingly complex and evolving concept, that of sustainability. Industrial biotechnology is seen as part of the overall solution, principally to combat climate change and strengthen energy security. At its beating heart is a huge policy challenge – the sustainability of biomass.

Author(s):
Krishna C. Pavanan , Roeland A. Bosch , Rob Cornelissen , Jim C. Philp

This study analyses and compares all standards and certification schemes for biofuels production that were approved to comply with the EU RED requirements. The study compared all of the EU-recognized schemes for certifying the sustainability of biofuels which had been established as of June, 2013. Measuring these 13 standards and certification schemes against WWF’s sustainability criteria revealed each standard’s overall added sustainability value and identified areas for improvement.

Indicators of the environmental sustainability of biofuel production, distribution, and use should be selected, measured, and interpreted with respect to the context in which they are used. The context of a sustainability assessment includes the purpose, the particular biofuel production and distribution system, policy conditions, stakeholder values, location, temporal influences, spatial scale, baselines, and reference scenarios.

Author(s):
Rebecca A. Efroymson , Virginia H. Dale , Keith L. Kline , Allen C. McBride , Jeffrey M. Bielicki , Raymond L. Smith , Esther S. Parish , Peter E. Schweizer , Denice M. Shaw
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Eucalyptus is a fast-growing tree native to Australia and could be used to supply biomass for bioenergy and other purposes along the coastal regions of the southeastern United States (USA). At a farmgate price of $66 dry Mg−1, a potential supply of 27 to 41.3 million dry Mg year−1 of Eucalyptus could be produced on about 1.75 million ha in the southeastern USA. A proposed suite of indicators provides a practical and consistent way to measure the sustainability of a particular situation where Eucalyptus might be grown as a feedstock for conversion to bioenergy.

Author(s):
Virginia H. Dale , Matthew H. Langholtz , Beau M. Wesh , Laurence M. Eaton
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Foreword: Governments and the private sector are increasingly aware of the need to pursue sustainability for biomass. Over the past decades many criteria have been drawn up, mandatory or criteria in voluntary standard systems or in public-private agreements. As pressure on the earth’s ecosystems is mounting, putting all these criteria into practice is becoming increasingly urgent. Implementing certified sustainable production is one of the good governance measures needed to attain sustainability in value chains.

The compatibility of elastomeric materials used in fuel storage and dispensing applications was determined for test fuels
representing neat gasoline and gasoline blends containing 10 and 17 vol.% ethanol, and 16 and 24 vol.% isobutanol. The
actual test fuel chemistries were based on the aggressive formulations described in SAE J1681 for oxygenated gasoline.
Elastomer specimens of fluorocarbon, fluorosilicone, acrylonitrile rubber (NBR), polyurethane, neoprene, styrene

Author(s):
Michael Kass
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The compatibility of plastic materials used in fuel storage and dispensing applications was determined for test fuels representing gasoline blended with 25 vol.% ethanol and gasoline blended with 16 and 24 vol.% isobutanol. Plastic materials included those used in flexible plastic piping and fiberglass resins. Other commonly used plastic materials were also evaluated. The plastic specimens were exposed to Fuel C, CE25a, CiBu16a, and CiBu24a for 16 weeks at 60oC.

Author(s):
Michael Kass
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in
mid-level alcohol-gasoline blends with 24% vol./vol. iso-butanol-gasoline (IB24) and 30% vol./vol. ethanol-gasoline (E30).
A single-cylinder research engine is used with a low and high compression ratio of 9.2:1 and 11.85:1 respectively. The
engine is equipped with hydraulically actuated valves, laboratory intake air, and is capable of external exhaust gas

Author(s):
Derek Splitter
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c.

Author(s):
Virginia H. Dale , Esther S. Parish , Keith L. Kline
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The expansion of biofuel production can lead to an array of negative environmental impacts. Therefore, the European Union (EU) has recently imposed sustainability criteria on biofuel production in the Renewable Energy Directive (RED). In this article, we analyse the effectiveness of the sustainability criteria for climate change mitigation and biodiversity conservation. We first use a global agriculture and forestry model to investigate environmental effects of the EU member states National Renewable Energy Action Plans (NREAPs) without sustainability criteria.

Author(s):
Stefan Frank , Hannes Böttcher , Petr Havlík , Hugo Valin , Aline Mosnier , Michael Obersteiner , Erwin Schmid , Berien Elbersen

Net benefits of bioenergy crops, including maize and perennial grasses such as switchgrass, are a function of several factors including the soil organic carbon (SOC) sequestered by these crops. Life cycle assessments (LCA) for bioenergy crops have been conducted using models in which SOC information is usually from the top 30 to 40 cm. Information on the effects of crop management practices on SOC has been limited so LCA models have largely not included any management practice effects.

Author(s):
Ronald F. Follett , Kenneth P. Vogel , Gary E. Varvel , Robert B. Mitchell , John Kimble

The Energy Independence and Security Act (EISA) of 2007 is an omnibus energy policy law designed to move the United States toward greater energy security and independence. A key provision of EISA is the Renewable Fuel Standard (RFS), which requires the nation to use 36 billion gallons per year (BGPY) of renewable fuel in vehicles by 2022.* Ethanol is the most widely used renewable fuel, and increasing the allowable ethanol content from 10% to 15% is expected to push renewable fuel consumption to as much as 21 BGPY.

Author(s):
Michael Kass
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form
and in midlevel alcohol−gasoline blends with 24% vol/vol isobutanol−gasoline (IB24) and 30% vol/vol ethanol−gasoline (E30).
A single-cylinder research engine was used with an 11.85:1 compression ratio, hydraulically actuated valves, laboratory intake air,
and was capable of external exhaust gas recirculation (EGR). Experiments were conducted with all fuels to full-load conditions

Author(s):
Derek Splitter
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form
and in midlevel alcohol−gasoline blends with 24% vol/vol isobutanol−gasoline (IB24) and 30% vol/vol ethanol−gasoline (E30).
A single-cylinder research engine is used with an 11.85:1 compression ratio, hydraulically actuated valves, laboratory intake air,
and was capable of external exhaust gas recirculation (EGR). Experiments were conducted with all fuels to full-load conditions

Author(s):
Derek Splitter
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Weighing contrasting evidence is an integral element of science (Osborne 2010). The dominant forum
for doing this and for scientific exchange in general is the peer-review and publication process. It tends
to be slow because of the time required to conduct critical reviews. Rapid exchange and discourse, in
the form of a live debate, can also move science forward.

Author(s):
Ridley, CE , HI Jager, , RA Efroymson , C Kwit , DA. Landis , ZH Leggett , DA Miller , CM Clark