Skip to main content

KDF Search Results

Displaying 41 - 60 of 136

The expansion of biofuel production can lead to an array of negative environmental impacts. Therefore, the European Union (EU) has recently imposed sustainability criteria on biofuel production in the Renewable Energy Directive (RED). In this article, we analyse the effectiveness of the sustainability criteria for climate change mitigation and biodiversity conservation. We first use a global agriculture and forestry model to investigate environmental effects of the EU member states National Renewable Energy Action Plans (NREAPs) without sustainability criteria.

Author(s):
Stefan Frank , Hannes Böttcher , Petr Havlík , Hugo Valin , Aline Mosnier , Michael Obersteiner , Erwin Schmid , Berien Elbersen

Net benefits of bioenergy crops, including maize and perennial grasses such as switchgrass, are a function of several factors including the soil organic carbon (SOC) sequestered by these crops. Life cycle assessments (LCA) for bioenergy crops have been conducted using models in which SOC information is usually from the top 30 to 40 cm. Information on the effects of crop management practices on SOC has been limited so LCA models have largely not included any management practice effects.

Author(s):
Ronald F. Follett , Kenneth P. Vogel , Gary E. Varvel , Robert B. Mitchell , John Kimble

Weighing contrasting evidence is an integral element of science (Osborne 2010). The dominant forum
for doing this and for scientific exchange in general is the peer-review and publication process. It tends
to be slow because of the time required to conduct critical reviews. Rapid exchange and discourse, in
the form of a live debate, can also move science forward.

Author(s):
Ridley, CE , HI Jager, , RA Efroymson , C Kwit , DA. Landis , ZH Leggett , DA Miller , CM Clark

Abstract: Unfavorable weather can significantly impact the production and provision of agriculture-based biomass feedstocks such as Miscanthus and switchgrass. This work quantified the impact of regional weather on the feedstock production systems using the BioFeed modeling framework. Weather effects were incorporated in BioFeed by including the probability of working day (pwd) parameter in the model, which defined the fraction of days in a specific period such as two weeks that were suitable for field operations.

Author(s):
Shastri, Yogendra

The increasing demand for bioenergy crops presents our society with the opportunity to design more sustainable landscapes. We have created a Biomass Location for Optimal Sustainability Model (BLOSM) to test the hypothesis that landscape design of cellulosic bioenergy crop plantings may simultaneously improve water quality (i.e. decrease concentrations of sediment, total phosphorus, and total nitrogen) and increase profits for farmer-producers while achieving a feedstock-production goal.

Author(s):
Parish, ES

The objective of this paper is to provide a review on the latest developments on the main initiatives and approaches for the sustainability certification for biofuels and/or bioenergy. A large number of national and international initiatives lately experienced rapid development in the view of the biofuels and bioenergy targets announced in the European Union, United States and other countries worldwide.

Author(s):
Nicolae Scarlat , Jean-François Dallemand

The objective of this paper is to give a comprehensive review of initiatives on biomass certification from different viewpoints of stakeholders, including national governments (such as The Netherlands, the UK, Belgium and Germany), the EC, NGOs, companies, and international bodies up until October 2007. Furthermore, opportunities and restrictions in the development of biomass certification are described, including international trade law limitations, lack of adequate methodologies, stakeholder involvement requirements and certification costs.

Author(s):
Jinke van Dam , Martin Junginger , André Faaij , Ingmar Jürgens , Gustavo Best , Uwe Fritsche

Indicators are needed to assess environmental sustainability of bioenergy systems. Effective indicators will help in the quantification of benefits and costs of bioenergy options and resource uses. We identify 19 measurable indicators for soil quality, water quality and quantity, greenhouse gases, biodiversity, air quality, and productivity, building on existing knowledge and on national and international programs that are seeking ways to assess sustainable bioenergy.

Author(s):
Allen C.McBride , Virginia H. Dale , Latha M. Baskaran , Mark E. Downing , Laurence M. Eaton , Rebecca A. Efroymson , Charles T. Garten Jr. , Keith L. Kline , Henriette I. Jager , Patrick J. Mulholland , Esther S. Parish , Peter E. Schweizer , John M. Storey
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This article summarises the compatibility of six elastomers – used in fuel
storage and delivery systems – with test fuels representing gasoline blended
with up to 85% ethanol. Individual coupons were exposed to test fuels for four
weeks to achieve saturation. The change in volume and hardness, when wetted
and after drying, were measured and compared with the original condition.

Author(s):
Michael Kass
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This paper presents an overview of 67 ongoing certification initiatives to safeguard the sustainability of bioenergy. Most recent initiatives are focused on the sustainability of liquid biofuels. Content-wise, most of these initiatives have mainly included environmental principles. Despite serious concerns in various parts of the world on the socio-economic impacts of bioenergy production, these are generally not included in existing bioenergy initiatives. At the same time, the overview shows a strong proliferation of standards.

Author(s):
J. van Dam , M. Junginger , A.P.C. Faaij

The paper discusses the importance of standards for sustainable bioenergy production. Sustainability of bioenergy production is crucial if bioenergy is supposed to contribute effectively to climate change mitigation. First, a brief overview of current bioenergy policies and of initiatives and legislation for bioenergy sustainability are given. Then, the authors show that under free market conditions undersupply of sustainable bioenergy will prevail. Two types of market failures are identified: information asymmetry and externalities in bioenergy production.

Author(s):
Renate Schubert

The biofuel boom has raised great expectations regarding renewable, domestic and carbon-free bioenergy sources but at the same time has led to concerns about the adverse environmental and socio-economic implications such as land-use competition, deforestation and market distortions. In this context, bioenergy systems have to demonstrate their environmental sustainability, economic viability and societal acceptability compared with fossil fuels and alternative energy sources.

Author(s):
Jürgen Scheffran

Rising energy prices, geopolitics as well as concerns over increasing oil prices, national security, and the impacts of greenhouse gas emissions on global climate change are driving large-scale efforts to implement bioenergy alternatives. Biomass fuels offer many new opportunities, but if not managed carefully, they may also carry significant risks. Biomass in this context is non-fossil material of biological origin from forest, energy crops, agriculture and different kind of wastes. Markets for energy generated from biomass are expanding at a fast pace.

Author(s):
Svetlana Ladanai , Johan Vinterbäck

Forest biomass is increasingly being considered as a source of sustainable energy. It is crucial, however, that this biomass be grown and harvested in a sustainable manner. International processes and certification systems have been developed to ensure sustainable forest management (SFM) in general, but it is important to consider if they adequately address specific impacts of intensified production and harvesting methods related to forest fuels.

Author(s):
Inge Stupak , Brenna Lattimore , Brian D. Titus , C. Tattersall Smith

Environmental impacts associated with the use of fossil fuels, rising prices, potential limitations in supply and concerns about regional and national security are driving the development and use of biomass for bioenergy, biofuels and bioproducts. However, the use of biomass does not automatically imply that its production, conversion and use are sustainable. Conflicts between various ecosystem services (economic production of food, fodder and fuels, biodiversity, social and cultural values, etc.) that are provided by fertile land are increasing as well.

Author(s):
A. Markevičius , V. Katinas , E. Perednis , M. Tamašauskienė

Adding bioenergy to the U.S. energy portfolio requires long‐term profitability for bioenergy producers and
long‐term protection of affected ecosystems. In this study, we present steps along the path toward evaluating both sides of
the sustainability equation (production and environmental) for switchgrass (Panicum virgatum) using the Soil and Water
Assessment Tool (SWAT). We modeled production of switchgrass and river flow using SWAT for current landscapes at a

To produce, trade on or use agricultural products as fuel—a practice as old as human history—has become a policy riddle spawning emotional debate and multiple, sometimes competing and conflicting, measures and actions. Today, many see fuel derivatives from agricultural produce and forests as a new frontier in energy supply. In a context of action against climate change, the carbon emissions efficiency of some energy crops has emerged as a promising, powerful alternative to the use of fossil fuels.

These Notes from the Field summarise the governance guidelines developed by the International Risk Governance Council (IRGC) to address the key challenges that policy-makers face when designing and implementing policies and regulations for the increasing production, trade and use of bioenergy. The guidelines comprise an integrated and coherent set of policy recommendations and practical actions to help policy-makers and industry account for the various trade-offs presented by bioenergy and develop sustainable bioenergy production for domestic use and international trade.

Author(s):
Marie Valentine Florin , Christopher Bunting

The sustainable production of bioenergy is vital to avoiding negative impacts on environmental goods such as climate, soil, water, and especially biodiversity. We propose three key issues that should be addressed in any biodiversity risk-mitigation strategy: conservation of areas of significant biodiversity value; mitigation of negative effects related to indirect land-use change; and promotion of agricultural practices with few negative impacts on biodiversity.

Author(s):
K. J. HENNENBERG , C. DRAGISIC S. HAYE , J. HEWSON , B. SEMROC , C. SAVY , K. WIEGMANN , H. FEHRENBACH , U. R. FRITSCHE

The expectations with respect to biomass as a resource for sustainable energy are sky-high. Many industrialized countries have adopted ambitious policy targets and have introduced financial measures to stimulate the production or use of bioenergy. Meanwhile, the side-effects and associated risks have been pointed out as well. To be able to make a well-informed decision, the Dutch government has expressed the intention to include sustainability criteria into relevant policy instruments.

Author(s):
Jeroen B. Guinée , Reinout Heijungs , Ester van der Voet