Skip to main content

KDF Search Results

Displaying 41 - 60 of 67

Land-use change (LUC) is a contentious policy issue because of its uncertain, yet potentially substantial, impact on bioenergy climate change benefits. Currently, the share of global GHG emissions from biofuels-induced LUC is small compared to that from LUC associated with food and feed production and other human-induced causes. However, increasing demand for biofuels derived from feedstocks grown on agricultural land could increase this contribution. No consensus has emerged on how to appropriately isolate and quantify LUC impacts of bioenergy from those of other LUC drivers.

Increasing demand for crop-based biofuels, in addition to other human drivers of land use, induces direct and indirect land use changes (LUC). Our system dynamics tool is intended to complement existing LUC modeling approaches and to improve the understanding of global LUC drivers and dynamics by allowing examination of global LUC under diverse scenarios and varying model assumptions. We report on a small subset of such analyses.

Reducing “Energy Poverty” is increasingly acknowledged as the “Missing Development Goal”. This is because access to electricity and modern energy sources is a basic requirement to achieve and sustain decent and sustainable living standards. It is essential for lighting, heating and cooking, as well as for education, modern health treatment and productive activities, hence food security and rural development.

The major opportunities to reduce fossil carbon dioxide (CO2) emissions involve improving the efficiency with which energy is used and making the transition to alternative sources of energy and materials. These include increasing the sustainable use of biomass for the production of biomaterials, heat and power, and for transport. Two recent reports* concluded that, when responsibly developed, bioenergy can make an important contribution to energy and climate policy, and can also contribute to social and economic development objectives.

EXECUTIVE SUMMARY: Life cycle assessment (LCA) is a powerful tool that may be used to quantify the environmental impacts of products and services. It includes all processes, from cradle-to-grave, along the supply chain of the product. When analysing energy systems, greenhouse gas (GHG) emissions (primarily CO2, CH4 and N2O) are the impact of primary concern. In using LCA to determine the climate change mitigation benefits of bioenergy, the life cycle emissions of the bioenergy system are compared with the emissions for a reference energy system.

Despite a rapid worldwide expansion of the biofuel industry, there is a lack of consensus within the scientific community about the potential of biofuels to reduce reliance on petroleum and decrease greenhouse gas (GHG) emissions. Although life cycle assessment provides a means to quantify these potential benefits and environmental impacts, existing methods limit direct comparison within and between different biofuel systems because of inconsistencies in performance metrics, system boundaries, and underlying parameter values.

The IPCC SRREN report addresses information needs of policymakers, the private sector and civil society on the potential of renewable energy sources for the mitigation of climate change, providing a comprehensive assessment of renewable energy technologies and related policy and financial instruments. The IPCC report was a multinational collaboration and synthesis of peer reviewed information: Reviewed, analyzed, coordinated, and integrated current high quality information.

The Energy Independence and Security Act (EISA) of 2007 established specific targets for the production of biofuel in the United States. Until advanced technologies become commercially viable, meeting these targets will increase demand for traditional agricultural commodities used to produce ethanol, resulting in land-use, production, and price changes throughout the farm sector. This report summarizes the estimated effects of meeting the EISA targets for 2015 on regional agricultural production and the environment. Meeting EISA targets for ethanol production is estimated to expand U.S.

Author(s):
Malcolm, Scott A.

This paper examines the impact of biofuel expansion on grain utilization and distribution at the state and cropping district level as most of grain producers and handlers are directly influenced by the local changes. We conducted a survey to understand the utilization and flows of corn, ethanol and its co-products, such as dried distillers grains (DDG) in Iowa. Results suggest that the rapidly expanding ethanol industry has a significant impact on corn utilization in Iowa.

Author(s):
Yu, Tun-Hsiang (Edward)

This paper introduces a spatial bioeconomic model for study of potential cellulosic biomass supply at regional scale. By modeling the profitability of alternative crop production practices, it captures the opportunity cost of replacing current crops by cellulosic biomass crops. The model draws upon biophysical crop input-output coefficients, price and cost data, and spatial transportation costs in the context of profit maximization theory. Yields are simulated using temperature, precipitation and soil quality data with various commercial crops and potential new cellulosic biomass crops.

Author(s):
Egbendewe-Mondzozo, Aklesso

Transgenic modification of plants is a key enabling technology for developing sustainable biofeedstocks for biofuels production. Regulatory decisions and the wider acceptance and development of transgenic biofeedstock crops are considered from the context of science-based risk assessment. The risk assessment paradigm for transgenic biofeedstock crops is fundamentally no different from that of current generation transgenic crops, except that the focus of the assessment must consider the unique attributes of a given biofeedstock crop and its environmental release.

Author(s):
Wolt, Jeffrey D.

Soaring global food prices are threatening to push more poor people back below the poverty line; this will probably become aggravated by the serious challenge that increasing population and climate changes are posing for food security. There is growing evidence that human activities involving fossil fuel consumption and land use are contributing to greenhouse gas emissions and consequently changing the climate worldwide. The finite nature of fossil fuel reserves is causing concern about energy security and there is a growing interest in the use of renewable energy sources such as biofuels.

Author(s):
Acosta, O.

Interest in liquid biofuels production and use has increased worldwide as part of government policies to address the growing scarcity and riskiness of petroleum use, and, at least in theory, to help mitigate adverse global climate change. The existing biofuels markets are dominated by U.S. ethanol production based on cornstarch, Brazilian ethanol production based on sugarcane, and European biodiesel production based on rapeseed oil.

Author(s):
Barry D. Solomon

Production of ethanol from agriculutural and forestry residues, municipal solid waste, energy crops, and other forms of lignocellulosic biomass could improve energy security, reduce trade deficits, decrease urban air pollution, and contribute little, if any, net carbon dioxide accumulation to the atmosphere. Dilute acid can open up the biomass structure for subsequent processing. The simultaneous saccharification and fermentation (SSF) process is favored for producing ethanol from the major fraction of lignocellulosic biomass, cellulose, because of its low cost potential.

Author(s):
Charles E. Wyman

In this article the environmental and socio-economical impacts of the production of ethanol from sugarcane in the state of São Paulo (Brazil) are evaluated. Subsequently, an attempt is made to determine to what extent these impacts are a bottleneck for a sustainable and certified ethanol production. Seventeen environmental and socio-economic areas of concern are analysed.

Author(s):
Edward Smeets

Since the mid-1990s there has been a growing worldwide interest in alternative transport fuels, of which ethanol is among the most promising options. This interest has in recent years gathered pace, stimulated by high oil prices and the generally perceived view that this trend is likely to accentuate in the future. The need to reduce GHG emissions is also a fundamental reason for this interest. The focus of this paper is on fuel ethanol production from sugar and starches with emphasis on short-term issues and implications for the global market.

Author(s):
Frank Rosillo-Calle

The rapidly expanding biofuel industry has changed the fundamentals of U.S. agricultural commodity markets. Increasing ethanol and biodiesel production has generated a fast-growing demand for corn and soybean products, which competes with the well-established domestic livestock industry and foreign buyers. Meanwhile, the co-products of biofuel production are replacing or displacing coarse grains and oilseed meal in feed rations for livestock.

Author(s):
Tun-Hsiang (Edward) Yu