Skip to main content

KDF Search Results

Displaying 61 - 67 of 67

Prior studies have estimated that a liter of bioethanol requires 263−784 L of water from corn farm to fuel pump, but these estimates have failed to account for the widely varied regional irrigation practices. By using regional time-series agricultural and ethanol production data in the U.S., this paper estimates the state-level field-to-pump water requirement of bioethanol across the nation. The results indicate that bioethanol’s water requirements can range from 5 to 2138 L per liter of ethanol depending on regional irrigation practices.

Author(s):
Yi-Wen Chiu

There is a strong societal need to evaluate and understand the sustainability of biofuels, especially because of the significant increases in production mandated by many countries, including the United States. Sustainability will be a strong factor in the regulatory environment and investments in biofuels. Biomass feedstock production is an important contributor to environmental, social, and economic impacts from biofuels.

Author(s):
Gayathri Gopalakrishnan

In this paper, we assess what is known or anticipated about environmental and sustainability factors associated with next-generation biofuels relative to the primary conventional biofuels (i.e., corn grain-based ethanol and soybean-based diesel) in the United States during feedstock production and conversion processes. Factors considered include greenhouse (GHG) emissions, air pollutant emissions, soil health and quality, water use and water quality, wastewater and solid waste streams, and biodiversity and land-use changes.

Author(s):
Pamela R. D. Williams

The United States shares with many other countries the goal of the United Nations Framework Convention on Climate Change “to achieve . . . stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system.”1 The critical role of new technologies in achieving this goal is underscored by the fact that most anthropogenic greenhouse gases (GHGs) emitted over the next century will come from equipment and infrastructure that has not yet been built.

Author(s):
Marilyn A. Brown

Ethanol production using corn grain has exploded in the Upper Midwest. This new demand for corn, and the new opportunities
for value-added processing and cattle production in rural communities, has created the best economic development
opportunity in the Corn Belt states in a generation or more. Ethanol demand has increased rapidly recently because of favorable
economics of ethanol vs. gasoline, and the need for a performance enhancer to replace MTBE (methyl tertiary-butyl ether)

Author(s):
Dennis Keeney

Greenhouse gas release from land use change (the socalled ?carbon debt?) has been identified as a potentially significant contributor to the environmental profile of biofuels. The time required for biofuels to overcome this carbon debt duetolandusechangeandbeginprovidingcumulativegreenhouse gas benefits is referred to as the ?payback period? and has been estimated to be 100-1000 years depending on the specific ecosystem involved in the land use change event. Two mechanisms for land use change exist: ?direct?

Author(s):
Kim,Hyungtae