Skip to main content

KDF Search Results

Displaying 41 - 47 of 47

Converting forest lands into bioenergy agriculture could accelerate climate change by emitting carbon stored in forests, while converting food agriculture lands into bioenergy agriculture could threaten food security. Both problems are potentially avoided by using abandoned agriculture lands for bioenergy agriculture. Here we show the global potential for bioenergy on abandoned agriculture lands to be less than 8% of current primary energy demand, based on historical land use data, satellite-derived land cover data, and global ecosystem modeling.

Author(s):
Campbell, J.E.

The U.S. Geological Survey (USGS) 2001 National Land Cover Database (NLCD) was compared to the U.S. Department of Agriculture (USDA) 2002 Census of Agriculture. Wecompared areal estimates for cropland at the state and county level for 14 States in the Upper Midwest region of the United States. Absolute differences between the NLCD and Census cropland areal estimates at the state level ranged from 1.3% (Minnesota) to 37.0% (Wisconsin). The majority of counties (74.5%) had differences of less than 100 km2. 7.2% of the counties had differences of more than 200 km2.

Author(s):
Maxwell, S.K.

Accurate and up-to-date global land cover data sets are necessary for various global change research studies including climate change, biodiversity conservation, ecosystem assessment, and environmental modeling. In recent years, substantial advancement has been achieved in generating such data products. Yet, we are far from producing geospatially consistent high-quality data at an operational level.

Author(s):
Chandra Giri

Many investigators need and use global land cover maps for a wide variety of purposes. Ironically, after many years of very limited availability, there are now multiple global land cover maps and it is not readily apparent (1) which is most useful for particular applications or (2) how to combine the different maps to provide an improved dataset. The existing global land cover maps at 1 km spatial resolution have arisen from different initiatives and are based on different remote sensing data and employed different methodologies. Perhaps more significantly, they have different legends.

Author(s):
Herold, M.

We highlight the complexity of land-use/cover change and propose a framework for a more general understanding of the issue, with emphasis on tropical regions. The review summarizes recent estimates on changes in cropland, agricultural intensification, tropical deforestation, pasture expansion, and urbanization and identifies the still unmeasured land-cover changes. Climate-driven land-cover modifications interact with land-use changes.

Author(s):
Lambin,E.F.

Greenhouse gas release from land use change (the socalled ?carbon debt?) has been identified as a potentially significant contributor to the environmental profile of biofuels. The time required for biofuels to overcome this carbon debt duetolandusechangeandbeginprovidingcumulativegreenhouse gas benefits is referred to as the ?payback period? and has been estimated to be 100-1000 years depending on the specific ecosystem involved in the land use change event. Two mechanisms for land use change exist: ?direct?

Author(s):
Kim,Hyungtae

Two of the most widely used land-cover data sets for the United States are the National Land-Cover Data (NLCD) at 30-m resolution and the Global Land- Cover Characteristics (GLCC) at 1-km nominal resolution. Both data sets were produced around 1992 and expected to provide similar land-cover information. This study investigated the spatial distribution of NLCD within major GLCC classes at 1-km unit over a total of 11 agricultural-related eco-regions across the continental United States.

Author(s):
Pei-Yu Chen