Skip to main content

KDF Search Results

Displaying 1 - 20 of 40

Vimmerstedt, L. J., Bush, B. W., Hsu, D. D., Inman, D. and Peterson, S. O. (2014), Maturation of biomass-to-biofuels conversion technology pathways for rapid expansion of biofuels production: a system dynamics perspective. Biofuels, Bioprod. Bioref.. doi: 10.1002/bbb.1515
 
 
To explore this file download Tableau reader: http://www.tableausoftware.com/products/reader

Author(s):
NREL

Understanding the development of the biofuels industry in the United States is important to policymakers and industry. The Biomass Scenario Model (BSM) is a system dynamics model of the biomass-to-biofuels system that can be used to explore policy effects on biofuels development. Because of the complexity of the model, as well as the wide range of possible future conditions that affect biofuels industry development, we have not developed a single reference case but instead developed a set of specific scenarios that provide various contexts for our analyses.

Author(s):
Inman, D.; Vimmerstedt, L.; Bush, B.; Peterson, S.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Biomass Scenario Model: Supplemental Tableau workbook for Christopher M Clark et al 2013 Environ. Res. Lett. 8 025016 doi:10.1088/1748-9326/8/2/025016 Growing a sustainable biofuels industry: economics, environmental considerations, and the role of the Conservation Reserve Program

To explore this file download Tableau reader: http://www.tableausoftware.com/products/reader

This paper describes the current Biomass Scenario Model (BSM) as of August 2013, a system dynamics model developed under the support of the U.S. Department of Energy (DOE). The model is the result of a multi-year project at the National Renewable Energy Laboratory (NREL). It is a tool designed to better understand biofuels policy as it impacts the development of the supply chain for biofuels in the United States.

Author(s):
Peterson, Steve

In support of the national goals for biofuel use in the United States, numerous technologies have been developed that convert biomass to biofuels. Some of these biomass to biofuel conversion technology pathways are operating at commercial scales, while others are in earlier stages of development. The advancement of a new pathway toward commercialization involves various types of progress, including yield improvements, process engineering, and financial performance.

Author(s):
Laura J. Vimmerstedt , Brian W. Bush
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Discussions of alternative fuel and propulsion technologies for transportation often overlook the infrastructure required to make these options practical and cost-effective. We estimate ethanol production facility locations and use a linear optimization model to consider the economic costs of distributing various ethanol fuel blends to all metropolitan areas in the United States. Fuel options include corn-based E5 (5% ethanol, 95% gasoline) to E16 from corn and switchgrass, as short-term substitutes for petroleum-based fuel.

Author(s):
William R. Morrow

Biomass Scenario Model Zotero References
National Renewable Energy Laboratory

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The U.S. Department of Energy (DOE) is promoting the development of ethanol from lignocellulosic feedstocks as an alternative to conventional petroleum-based transportation fuels. DOE funds both fundamental and applied research in this area and needs a method for predicting cost benefits of many research proposals. To that end, the National Renewable Energy Laboratory (NREL) has modeled many potential process designs and estimated the economics of each process during the last 20 years. This report is an update of the ongoing process design and economic analyses at NREL.

Author(s):
Aden, A.

A new addition to the growing biofuels resources list at AgMRC is a cellulosic ethanol feasibility template developed by agricultural economists at Oklahoma State University (OSU). The purpose of the spreadsheet-based template is to give users the opportunity to assess the economics of a commercial-scale plant using enzymatic hydrolysis methods to process cellulosic materials into ethanol. The OSU Cellulosic Ethanol Feasibility Template can be downloaded and modified by the user to mimic the basic operating parameters of a proposed ethanol plant under a variety of production conditions.

Author(s):
Rodney Holcomb

This paper examines the possibilities of breaking into the cellulosic ethanol market in south Louisiana via strategic feedstock choices and the leveraging of the area’s competitive advantages. A small plant strategy is devised whereby the first-mover problem might be solved, and several scenarios are tested using Net Present Value analysis.

Author(s):
Darby, Paul

The Energy Independence and Security Act (EISA) of 2007 established specific targets for the production of biofuel in the United States. Until advanced technologies become commercially viable, meeting these targets will increase demand for traditional agricultural commodities used to produce ethanol, resulting in land-use, production, and price changes throughout the farm sector. This report summarizes the estimated effects of meeting the EISA targets for 2015 on regional agricultural production and the environment. Meeting EISA targets for ethanol production is estimated to expand U.S.

Author(s):
Malcolm, Scott A.

USDA Agricultural Projections for 2011-20, released in February 2011, provide longrun projections for the farm sector for the next 10 years. These annual projections cover agricultural commodities, agricultural trade, and aggregate indicators of the sector, such as farm income and food prices.

Important assumptions for the projections include:

Author(s):
USDA Economic Research Service

This paper examines the impact of declining energy prices on biofuels production and use and its implications to agricultural commodity markets. It uses PEATSim, a dynamic partial equilibrium, multi-commodity, multi-country global trade model of the agriculture sector to analyze the interaction between biofuel, crop and livestock sectors. The ability of countries to achieve their energy goals will be affected by future direction of petroleum prices.

Author(s):
Peters, May

PEATSim (Partial Equilibrium Agricultural Trade Simulation) is a dynamic, partial equilibrium, mathematical-based model that enables users to reach analytical solutions to problems, given a set of parameters, data, and initial
conditions. This theoretical tool developed by ERS incorporates a wide range of domestic and border policies that enables it to estimate the market and trade effects of policy changes on agricultural markets. PEATSim captures

Author(s):
USDA Economic Research Service

Agricultural markets often feature significant transport costs and spatially distributed production and processing which causes spatial imperfect competition. Spatial economics considers the firms’ decisions regarding location and spatial price strategy separately, usually on the demand side, and under restrictive assumptions. Therefore, alternative approaches are needed to explain, e.g., the location of new ethanol plants in the U.S. at peripheral as well as at central locations and the observation of different spatial price strategies in the market.

Author(s):
Graubner, Marten

This paper introduces a spatial bioeconomic model for study of potential cellulosic biomass supply at regional scale. By modeling the profitability of alternative crop production practices, it captures the opportunity cost of replacing current crops by cellulosic biomass crops. The model draws upon biophysical crop input-output coefficients, price and cost data, and spatial transportation costs in the context of profit maximization theory. Yields are simulated using temperature, precipitation and soil quality data with various commercial crops and potential new cellulosic biomass crops.

Author(s):
Egbendewe-Mondzozo, Aklesso

A system of equations representing corn supply, feed demand, export demand, food, alcohol and industrial (FAI) demand, and corn price is estimated by three-stage least squares. A price dependent reduced form equation is then formed to investigate the effect of ethanol production on the national average corn price. The elasticity of corn price with respect to ethanol production is then obtained. Results suggest that ethanol production has a positive impact on the national corn price and that the demand from FAI has a greater impact on the corn price than other demand categories.

Author(s):
Fortenbery, T. Randall

When the lignocellulosic biofuels industry reaches maturity and many types of biomass sources become economically viable, management of multiple feedstock supplies – that vary in their yields, density (tons per unit area), harvest window, storage and seasonal costs, storage losses, transport distance to the production plant – will become increasingly important for the success of individual enterprises. The manager’s feedstock procurement problem is modeled as a multi-period sequence problem to account for dynamic management over time.

Author(s):
Kumarappan, Subbu

In this study we use data envelopment analysis to decompose the overall economic efficiency of a sample of ethanol plants into three subcomponents: technical efficiency, allocative efficiency and a new component we call marketing efficiency. The relative importance of these sources of efficiency is of particular interest given the recent history of bankruptcies, plant closings and ownership change in the industry. Results reveal that observed production units are very efficient from a technical point of view as suggested by a standard deviation of 1% in technical efficiency.

Author(s):
Sesmero, Juan P.