Skip to main content

KDF Search Results

Displaying 41 - 60 of 109

Weighing contrasting evidence is an integral element of science (Osborne 2010). The dominant forum
for doing this and for scientific exchange in general is the peer-review and publication process. It tends
to be slow because of the time required to conduct critical reviews. Rapid exchange and discourse, in
the form of a live debate, can also move science forward.

Author(s):
Ridley, CE , HI Jager, , RA Efroymson , C Kwit , DA. Landis , ZH Leggett , DA Miller , CM Clark

Understanding the environmental effects of alternative fuel production is critical to characterizing the sustainability of energy resources to inform policy and regulatory decisions. The magnitudes of these environmental effects vary according to the intensity and scale of fuel production along each step of the supply chain. We compare the spatial extent and temporal duration of ethanol and gasoline production processes and environmental effects based on a literature review and then synthesize the scale differences on space-time diagrams.

Author(s):
Parish, Esther

The objective of this paper is to provide a review on the latest developments on the main initiatives and approaches for the sustainability certification for biofuels and/or bioenergy. A large number of national and international initiatives lately experienced rapid development in the view of the biofuels and bioenergy targets announced in the European Union, United States and other countries worldwide.

Author(s):
Nicolae Scarlat , Jean-François Dallemand

The objective of this paper is to give a comprehensive review of initiatives on biomass certification from different viewpoints of stakeholders, including national governments (such as The Netherlands, the UK, Belgium and Germany), the EC, NGOs, companies, and international bodies up until October 2007. Furthermore, opportunities and restrictions in the development of biomass certification are described, including international trade law limitations, lack of adequate methodologies, stakeholder involvement requirements and certification costs.

Author(s):
Jinke van Dam , Martin Junginger , André Faaij , Ingmar Jürgens , Gustavo Best , Uwe Fritsche

Indicators are needed to assess environmental sustainability of bioenergy systems. Effective indicators will help in the quantification of benefits and costs of bioenergy options and resource uses. We identify 19 measurable indicators for soil quality, water quality and quantity, greenhouse gases, biodiversity, air quality, and productivity, building on existing knowledge and on national and international programs that are seeking ways to assess sustainable bioenergy.

Author(s):
Allen C.McBride , Virginia H. Dale , Latha M. Baskaran , Mark E. Downing , Laurence M. Eaton , Rebecca A. Efroymson , Charles T. Garten Jr. , Keith L. Kline , Henriette I. Jager , Patrick J. Mulholland , Esther S. Parish , Peter E. Schweizer , John M. Storey
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Indicators are needed to assess environmental sustainability of bioenergy systems. Effective indicators
will help in the quantification of benefits and costs of bioenergy options and resource uses. We identify
19 measurable indicators for soil quality, water quality and quantity, greenhouse gases, biodiversity, air
quality, and productivity, building on existing knowledge and on national and international programs
that are seeking ways to assess sustainable bioenergy. Together, this suite of indicators is hypothesized

Author(s):
McBride, Allen

This paper presents an overview of 67 ongoing certification initiatives to safeguard the sustainability of bioenergy. Most recent initiatives are focused on the sustainability of liquid biofuels. Content-wise, most of these initiatives have mainly included environmental principles. Despite serious concerns in various parts of the world on the socio-economic impacts of bioenergy production, these are generally not included in existing bioenergy initiatives. At the same time, the overview shows a strong proliferation of standards.

Author(s):
J. van Dam , M. Junginger , A.P.C. Faaij

The paper discusses the importance of standards for sustainable bioenergy production. Sustainability of bioenergy production is crucial if bioenergy is supposed to contribute effectively to climate change mitigation. First, a brief overview of current bioenergy policies and of initiatives and legislation for bioenergy sustainability are given. Then, the authors show that under free market conditions undersupply of sustainable bioenergy will prevail. Two types of market failures are identified: information asymmetry and externalities in bioenergy production.

Author(s):
Renate Schubert

The biofuel boom has raised great expectations regarding renewable, domestic and carbon-free bioenergy sources but at the same time has led to concerns about the adverse environmental and socio-economic implications such as land-use competition, deforestation and market distortions. In this context, bioenergy systems have to demonstrate their environmental sustainability, economic viability and societal acceptability compared with fossil fuels and alternative energy sources.

Author(s):
Jürgen Scheffran

Rising energy prices, geopolitics as well as concerns over increasing oil prices, national security, and the impacts of greenhouse gas emissions on global climate change are driving large-scale efforts to implement bioenergy alternatives. Biomass fuels offer many new opportunities, but if not managed carefully, they may also carry significant risks. Biomass in this context is non-fossil material of biological origin from forest, energy crops, agriculture and different kind of wastes. Markets for energy generated from biomass are expanding at a fast pace.

Author(s):
Svetlana Ladanai , Johan Vinterbäck

Forest biomass is increasingly being considered as a source of sustainable energy. It is crucial, however, that this biomass be grown and harvested in a sustainable manner. International processes and certification systems have been developed to ensure sustainable forest management (SFM) in general, but it is important to consider if they adequately address specific impacts of intensified production and harvesting methods related to forest fuels.

Author(s):
Inge Stupak , Brenna Lattimore , Brian D. Titus , C. Tattersall Smith

Environmental impacts associated with the use of fossil fuels, rising prices, potential limitations in supply and concerns about regional and national security are driving the development and use of biomass for bioenergy, biofuels and bioproducts. However, the use of biomass does not automatically imply that its production, conversion and use are sustainable. Conflicts between various ecosystem services (economic production of food, fodder and fuels, biodiversity, social and cultural values, etc.) that are provided by fertile land are increasing as well.

Author(s):
A. Markevičius , V. Katinas , E. Perednis , M. Tamašauskienė

To produce, trade on or use agricultural products as fuel—a practice as old as human history—has become a policy riddle spawning emotional debate and multiple, sometimes competing and conflicting, measures and actions. Today, many see fuel derivatives from agricultural produce and forests as a new frontier in energy supply. In a context of action against climate change, the carbon emissions efficiency of some energy crops has emerged as a promising, powerful alternative to the use of fossil fuels.

These Notes from the Field summarise the governance guidelines developed by the International Risk Governance Council (IRGC) to address the key challenges that policy-makers face when designing and implementing policies and regulations for the increasing production, trade and use of bioenergy. The guidelines comprise an integrated and coherent set of policy recommendations and practical actions to help policy-makers and industry account for the various trade-offs presented by bioenergy and develop sustainable bioenergy production for domestic use and international trade.

Author(s):
Marie Valentine Florin , Christopher Bunting

The sustainable production of bioenergy is vital to avoiding negative impacts on environmental goods such as climate, soil, water, and especially biodiversity. We propose three key issues that should be addressed in any biodiversity risk-mitigation strategy: conservation of areas of significant biodiversity value; mitigation of negative effects related to indirect land-use change; and promotion of agricultural practices with few negative impacts on biodiversity.

Author(s):
K. J. HENNENBERG , C. DRAGISIC S. HAYE , J. HEWSON , B. SEMROC , C. SAVY , K. WIEGMANN , H. FEHRENBACH , U. R. FRITSCHE

The expectations with respect to biomass as a resource for sustainable energy are sky-high. Many industrialized countries have adopted ambitious policy targets and have introduced financial measures to stimulate the production or use of bioenergy. Meanwhile, the side-effects and associated risks have been pointed out as well. To be able to make a well-informed decision, the Dutch government has expressed the intention to include sustainability criteria into relevant policy instruments.

Author(s):
Jeroen B. Guinée , Reinout Heijungs , Ester van der Voet

Taking Brazilian bioethanol as an example, this paper presents possible sustainability criteria for a certification scheme aimed to minimize negative socio-ecological impacts and to increase the sustainable production of biomass. We describe the methods that have led us to the identification of a first set of feasible sustainability criteria for Brazilian bioethanol and discuss issues to be considered when developing certification schemes for sustainability.

Author(s):
R. Delzeit , K. Holm-Müller

Sustainable bioenergy systems are, by definition, embedded in social, economic, and environmental contexts and depend on support of many stakeholders with different perspectives. The resulting complexity constitutes a major barrier to the implementation of bioenergy projects. The goal of this paper is to evaluate the potential of Multi Criteria Analysis (MCA) to facilitate the design and implementation of sustainable bioenergy projects.

Author(s):
Thomas Buchholz , Ewald Rametsteiner , Timothy A. Volk , Valerie A. Luzadis

Multi-criteria decision analysis (MCDA) methods have become increasingly popular in decision-making for sustainable energy because of the multi-dimensionality of the sustainability goal and the complexity of socio-economic and biophysical systems. This article reviewed the corresponding methods in different stages of multi-criteria decision-making for sustainable energy, i.e., criteria selection, criteria weighting, evaluation, and final aggregation. The criteria of energy supply systems are summarized from technical, economic, environmental and social aspects.

Author(s):
Jiang-Jiang Wang , You-Yin Jing , Chun-Fa Zhang , Jun-Hong Zhao

Environmental impacts associated with the use of fossil fuels, rising prices, potential limitations in supply and concerns about regional and national security are driving the development and use of biomass for bioenergy, biofuels and bioproducts. However, the use of biomass does not automatically imply that its production, conversion and use are sustainable. In order to operationalize sustainability assessments of biomass systems, it is crucial to identify critical criteria, but keep their number and measurement at a manageable level.

Author(s):
Thomas Buchholz , Valerie A. Luzadis , Timothy A. Volk