Skip to main content

KDF Search Results

Displaying 41 - 50 of 50

The Energy Independence and Security Act (EISA) of 2007 established specific targets for the production of biofuel in the United States. Until advanced technologies become commercially viable, meeting these targets will increase demand for traditional agricultural commodities used to produce ethanol, resulting in land-use, production, and price changes throughout the farm sector. This report summarizes the estimated effects of meeting the EISA targets for 2015 on regional agricultural production and the environment. Meeting EISA targets for ethanol production is estimated to expand U.S.

Author(s):
Malcolm, Scott A.

This paper examines the impact of biofuel expansion on grain utilization and distribution at the state and cropping district level as most of grain producers and handlers are directly influenced by the local changes. We conducted a survey to understand the utilization and flows of corn, ethanol and its co-products, such as dried distillers grains (DDG) in Iowa. Results suggest that the rapidly expanding ethanol industry has a significant impact on corn utilization in Iowa.

Author(s):
Yu, Tun-Hsiang (Edward)

This paper introduces a spatial bioeconomic model for study of potential cellulosic biomass supply at regional scale. By modeling the profitability of alternative crop production practices, it captures the opportunity cost of replacing current crops by cellulosic biomass crops. The model draws upon biophysical crop input-output coefficients, price and cost data, and spatial transportation costs in the context of profit maximization theory. Yields are simulated using temperature, precipitation and soil quality data with various commercial crops and potential new cellulosic biomass crops.

Author(s):
Egbendewe-Mondzozo, Aklesso

Events external to agriculture have set in motion the conditions for structural change in the marketing of corn in the U.S. These included a rapid increase in the price of crude oil from $40 per barrel to over $100 caused by hurricanes, geopolitical events, an increased global demand for energy from countries like China and India, and in December 2007, the U.S. raising the renewable fuel standards. The results of this research show that there could be significant changes in the historical utilization and marketing of corn in the U.S.

Author(s):
Conley, Dennis M.

In this study we use data envelopment analysis to decompose the overall economic efficiency of a sample of ethanol plants into three subcomponents: technical efficiency, allocative efficiency and a new component we call marketing efficiency. The relative importance of these sources of efficiency is of particular interest given the recent history of bankruptcies, plant closings and ownership change in the industry. Results reveal that observed production units are very efficient from a technical point of view as suggested by a standard deviation of 1% in technical efficiency.

Author(s):
Sesmero, Juan P.

The rapidly expanding biofuel industry has changed the fundamentals of U.S. agricultural commodity markets. Increasing ethanol and biodiesel production has generated a fast-growing demand for corn and soybean products, which competes with the well-established domestic livestock industry and foreign buyers. Meanwhile, the co-products of biofuel production are replacing or displacing coarse grains and oilseed meal in feed rations for livestock.

Author(s):
Tun-Hsiang (Edward) Yu

Prior studies have estimated that a liter of bioethanol requires 263−784 L of water from corn farm to fuel pump, but these estimates have failed to account for the widely varied regional irrigation practices. By using regional time-series agricultural and ethanol production data in the U.S., this paper estimates the state-level field-to-pump water requirement of bioethanol across the nation. The results indicate that bioethanol’s water requirements can range from 5 to 2138 L per liter of ethanol depending on regional irrigation practices.

Author(s):
Yi-Wen Chiu

There is a strong societal need to evaluate and understand the sustainability of biofuels, especially because of the significant increases in production mandated by many countries, including the United States. Sustainability will be a strong factor in the regulatory environment and investments in biofuels. Biomass feedstock production is an important contributor to environmental, social, and economic impacts from biofuels.

Author(s):
Gayathri Gopalakrishnan

In this paper, we assess what is known or anticipated about environmental and sustainability factors associated with next-generation biofuels relative to the primary conventional biofuels (i.e., corn grain-based ethanol and soybean-based diesel) in the United States during feedstock production and conversion processes. Factors considered include greenhouse (GHG) emissions, air pollutant emissions, soil health and quality, water use and water quality, wastewater and solid waste streams, and biodiversity and land-use changes.

Author(s):
Pamela R. D. Williams