Skip to main content

KDF Search Results

Displaying 1 - 20 of 51

The goal of this repository is to promote transparency and ease-of-access to the U.S. Department of Energy Bioenergy Technologies Office (BETO) supported public studies involving techno-economic analysis (TEA). As such, this database summarizes the economic and technical parameters associated with the modeled biorefinery processes for the production of biofuels and bioproducts, as presented in a range of published reports and papers.

Organization:
DOE
Author(s):
Christopher Kinchin
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Water consumption and water quality continue to be key factors affecting environmental sustainability in biofuel production. This review covers the findings from biofuel water analyses published over the past 2 years to underscore the progress made, and to highlight advancements in understanding the interactions among increased production and water demand, water resource availability, and potential changes in water quality. We focus on two key areas: water footprint assessment and watershed modeling.

Organization:
DOE
Author(s):
May Wu , Zhonglong Zhang , Yiwen Chiu
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The compatibility of plastic materials used in fuel storage and dispensing applications was determined for an off-highway diesel fuel
and a blend containing 20% bio-oil (Bio20) derived from a fast pyrolysis process. Bio20 is not to be confused with B20, which is a
diesel blend containing 20% biodiesel. The feedstock, processing, and chemistry of biodiesel are markedly different from bio-oil.
Plastic materials included those identified for use as seals, coatings, piping and fiberglass resins, but many are also used in vehicle

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The compatibility of plastic materials used in fuel storage and dispensing applications was determined for a test fuel representing
gasoline blended with 10% ethanol. Prior investigations were performed on gasoline fuels containing 25, 50 and 85% ethanol, but the
knowledge gap existing from 0 to 25% ethanol precluded accurate compatibility assessment of low level blends, especially for the
current E10 fuel (gasoline containing 10% ethanol) used in most filling stations, and the recently accepted E15 fuel blend (gasoline
blended with up to15% ethanol).

Author(s):
Michael Kass
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The compatibility of plastic materials used in fuel storage and dispensing applications was determined for test fuels representing gasoline blended with 25 vol.% ethanol and gasoline blended with 16 and 24 vol.% isobutanol. Plastic materials included those used in flexible plastic piping and fiberglass resins. Other commonly used plastic materials were also evaluated. The plastic specimens were exposed to Fuel C, CE25a, CiBu16a, and CiBu24a for 16 weeks at 60oC.

Author(s):
Michael Kass
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This paper describes the current Biomass Scenario Model (BSM) as of August 2013, a system dynamics model developed under the support of the U.S. Department of Energy (DOE). The model is the result of a multi-year project at the National Renewable Energy Laboratory (NREL). It is a tool designed to better understand biofuels policy as it impacts the development of the supply chain for biofuels in the United States.

Author(s):
Peterson, Steve

The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form
and in midlevel alcohol−gasoline blends with 24% vol/vol isobutanol−gasoline (IB24) and 30% vol/vol ethanol−gasoline (E30).
A single-cylinder research engine was used with an 11.85:1 compression ratio, hydraulically actuated valves, laboratory intake air,
and was capable of external exhaust gas recirculation (EGR). Experiments were conducted with all fuels to full-load conditions

Author(s):
Derek Splitter
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form
and in midlevel alcohol−gasoline blends with 24% vol/vol isobutanol−gasoline (IB24) and 30% vol/vol ethanol−gasoline (E30).
A single-cylinder research engine is used with an 11.85:1 compression ratio, hydraulically actuated valves, laboratory intake air,
and was capable of external exhaust gas recirculation (EGR). Experiments were conducted with all fuels to full-load conditions

Author(s):
Derek Splitter
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Relationships between people and their environment are largely defined by land use. Space and soil are needed for native plants and wildlife, as well as for crops used for food, feed, fiber, wood products and biofuel (liquid fuel derived from plant material). People also use land for homes, schools, jobs, transportation, mining and recreation. Social and economic forces influence the allocation of land to various uses. The

Author(s):
Virginia H. Dale

Despite recent claims to the contrary, plant-based fuels developed in economically and environmentally sensible ways can contribute significantly to the nation’s— indeed, the world’s—energy security while providing a host of benefits for many people worldwide.

Author(s):
Keith L. Kline , Virginia H. Dale , Russell Lee , Paul Leiby

IN THEIR REPORTS IN THE 29 FEBRUARY ISSUE (“LAND CLEARING AND THE BIOFUEL CARBON debt,” J. Fargione et al., p. 1235, and “Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change,” T. Searchinger et al., p. 1238), the authors do not provide adequate support for their claim that biofuels cause high emissions due to land-use change. The conclusions of both papers depend on the misleading premise that biofuel production causes forests and grasslands to be converted to agriculture.

Author(s):
Keith L. Kline , Virginia H. Dale

Discussions of alternative fuel and propulsion technologies for transportation often overlook the infrastructure required to make these options practical and cost-effective. We estimate ethanol production facility locations and use a linear optimization model to consider the economic costs of distributing various ethanol fuel blends to all metropolitan areas in the United States. Fuel options include corn-based E5 (5% ethanol, 95% gasoline) to E16 from corn and switchgrass, as short-term substitutes for petroleum-based fuel.

Author(s):
William R. Morrow

Recent legislative mandates have been enacted at state and federal levels with the purpose of reducing life cycle greenhouse gas (GHG) emissions from transportation fuels. This legislation encourages the substitution of fossil fuels with ‘low-carbon’ fuels. The burden is put on regulatory agencies to determine the GHG-intensity of various fuels, and those agencies naturally look to science for guidance.

The IPCC SRREN report addresses information needs of policymakers, the private sector and civil society on the potential of renewable energy sources for the mitigation of climate change, providing a comprehensive assessment of renewable energy technologies and related policy and financial instruments. The IPCC report was a multinational collaboration and synthesis of peer reviewed information: Reviewed, analyzed, coordinated, and integrated current high quality information.

The U.S. Department of Energy (DOE) is promoting the development of ethanol from lignocellulosic feedstocks as an alternative to conventional petroleum-based transportation fuels. DOE funds both fundamental and applied research in this area and needs a method for predicting cost benefits of many research proposals. To that end, the National Renewable Energy Laboratory (NREL) has modeled many potential process designs and estimated the economics of each process during the last 20 years. This report is an update of the ongoing process design and economic analyses at NREL.

Author(s):
Aden, A.

A new addition to the growing biofuels resources list at AgMRC is a cellulosic ethanol feasibility template developed by agricultural economists at Oklahoma State University (OSU). The purpose of the spreadsheet-based template is to give users the opportunity to assess the economics of a commercial-scale plant using enzymatic hydrolysis methods to process cellulosic materials into ethanol. The OSU Cellulosic Ethanol Feasibility Template can be downloaded and modified by the user to mimic the basic operating parameters of a proposed ethanol plant under a variety of production conditions.

Author(s):
Rodney Holcomb