Skip to main content

KDF Search Results

Displaying 81 - 100 of 133

It is expected that international biomass trade will significantly increase in the coming years because of the possibly lower costs of imported biomass, the better supply security through diversification and the support by energy and climate policies of various countries. Concerns about potential negative effects of large-scale biomass production and export, like deforestation or the competition between food and biomass production, have led to the demand for sustainability criteria and certification systems that can control biomass trade.

Author(s):
I. Lewandowski , A.P.C. Faaij

The EU has set ambitious targets to raise the share of renewable energies, particularly biofuels. With an increasingly controversial public debate and more scientific evidence about the downsites of biofuels, recently the European Unions biofuel targets have been bound to the condition that they have to be produced sustainable. Therefore the European Commission is currently developing sustainability criteria for biofuels.Establishing certification schemes is a possible strategy to ensure that bioenergy crops are produced in a sustainable manner.

Author(s):
Stephanie Schlegel , Timo Kaphengst

While there is an increasing demand for active public involvement in forestry decision-making, there are as yet few successful models for achieving this in the new sustainable forest management (SFM) context. This paper describes the special needs of forest managers conducting participatory SFM planning in a sometimes-polarized public context, and outlines criteria for designing decision-support processes to meet these needs.

Author(s):
Stephen R.J. Sheppard , Michael Meitner

The Emissions Prediction and Policy Analysis (EPPA) model is the part of the MIT Integrated Global Systems Model (IGSM) that represents the human systems. EPPA is a recursive-dynamic multi-regional general equilibrium model of the world economy, which is built on the GTAP dataset and additional data for the greenhouse gas and urban gas emissions. It is designed to develop projections of economic growth and anthropogenic emissions of greenhouse related gases and aerosols. The main purpose of this report is to provide documentation of a new version of EPPA, EPPA version 4.

Author(s):
Paltsev Sergey

Fertilizers used to increase the yield of crops used for food or bio-based products can migrate through the environment and potentially cause adverse environmental impacts. Nitrogen fertilizers have a complex biogeochemical cycle. Through their transformations and partitioning among environmental compartments, they can contribute to eutrophication of surface waters at local and regional scales, groundwater degradation, acid rain, and climate change.

Author(s):
Powers, Susan E.

Global energy use projections predict that biomass will be an important source of renewable energy in the coming decades. Short-rotation woody crops will be the prime source of this biomass. However, the sustainability of woody crops has been questioned. Using internationally accepted forest sustainability criteria, an assessment of willow biomass crops indicates that they are sustainable compared to agricultural land and the fossil fuel-based energy systems they will replace.

Author(s):
Timothy A. Volk , Theo Verwijst , Pradeep J. Tharakan , Lawrence P. Abrahamso , Edwin H. White

Power generation emits significant amounts of greenhouse gases (GHGs), mainly carbon dioxide (CO2). Sequestering CO2 from the power plant flue gas can significantly reduce the GHGs from the power plant itself, but this is not the total picture. CO2 capture and sequestration consumes additional energy, thus lowering the plant's fuel-to-electricity efficiency. To compensate for this, more fossil fuel must be procured and consumed to make up for lost capacity.

Author(s):
Spath, Pam

A series of life cycle assessments (LCA) have been conducted on biomass, coal, and natural gas systems in order to quantify the environmental benefits and drawbacks of each. The power generation options that were studied are: (1) a biomass-fired integrated gasification combined cycle (IGCC) system using a biomass energy crop, (2) a direct-fired biomass power plant using biomass residue, (3) a pulverized coal (PC) boiler representing an average U.S. coal-fired power plant, (4) a system cofiring biomass residue with coal, and (5) a natural gas combined cycle power plant.

Author(s):
Mann, M.K.

An analysis was performed at NREL to examine the global warming potential and energy balance of power generation from fossil and biomass systems including CO2 sequestration. To get the true environmental picture, a life cycle approach, which takes into account upstream process steps, was applied. Each system maintained the same constant generating capacity and any lost capacity due to CO2 sequestration was accounted for by adding power generation from a natural gas combined-cycle system. This paper discusses the systems examined and gives the net energy and GWP for each system.

Author(s):
Spath, Pam

There is increasing pressure on the forestry industry to adopt sustainable practices, but a lack of knowledge about how to facilitate this, and how to measure sustainability. This book reviews current thinking about scientifically based indicators, and sustainable management of natural forests and plantations. Information is applicable to boreal, temperate and tropical biomes. The contents have been developed from papers presented at a IUFRO conference held in Australia, in order to develop a state-of the art report on this subject.

Author(s):
Robert John Raison

The generation of electricity, and the consumption of energy in general, often result in adverse effects on the environment. Coal-fired power plants generate over half of the electricity used in the U.S., and therefore play a significant role in any discussion of energy and the environment. By cofiring biomass, currently-operating coal plants have an opportunity to reduce the impact they have, but to what degree, and with what trade-offs? A life cycle assessment (LCA) has been conducted on a coal-fired power system that cofires wood residue.

Author(s):
Spath, Pam

This paper offers a graphical exposition of the GTAP model of global trade. Particular emphasis is placed on the accounting, or equilibrium, relationships in the model. It begins with a treatment of the a one region version of GTAP, thereafter adding a rest of world region to highlight the treatment of trade flows in the model. The implementation of policy instruments in GTAP is also explored, using simple supply-demand graphics. The material provided in this paper was first developed as an introduction to GTAP for participants taking the annual short course.

Author(s):
BROCKMEIER,Martina

This report discusses the development of greenhouse gas (GHG) emissions estimates for the production of Fischer-Tropsch (FT) derived fuels (in particular, FT diesel), makes comparisons of these estimates to reported literature values for petroleum-derived diesel, and outlines strategies for substantially reducing these emissions.

Author(s):
Marano, John J.

Coal has the largest share of utility power generation in the U.S., accounting for approximately 56% of all utility-produced electricity (U.S. DOE, 1998). Therefore, understanding the environmental implications of producing electricity from coal is an important component of any plan to reduce total emissions and resource consumption.

Author(s):
Spath, Pam

It has become widely accepted that biomass power offers opportunities for reduced environmental impacts compared to fossil fuel-based systems. Intuitively obvious are the facts that per kilowatt-hour of energy produced, biomass systems will emit less CO2 and consume less non-renewable energy.

Author(s):
Mann, Margaret

To determine the environmental implications of producing electricity from biomass and coal, life cycle assessments (LCA) have been conducted on systems based on three power generation options: (1) a biomass-fired integrated gasification combined cycle (IGCC) system, (2) three coal-fired power plant technologies, and (3) a system cofiring waste biomass with coal.

Author(s):
Spath, Pam

The U.S. Department of Energy has supported a research and development program for the establishment of renewable, biomass-derived, liquid fuels for the better part of the last twenty years. These 'biofuels' represent opportunities to respond to uncertainties about our energy security and the future health of our environment. Throughout its history, the Biofuels Program has experienced an ongoing fiscal 'roller coaster'. Funding has ebbed and flowed with changing political and public attitudes about energy.

Author(s):
Sheehan, J.

Biodiesel is a renewable diesel fuel substitute. It can be made from a variety of natural oils and fats. Biodiesel is made by chemically combining any natural oil or fat with an alcohol such as methanol or ethanol. Methanol has been the most commonly used alcohol in the commercial production of biodiesel. In Europe, biodiesel is widely available in both its neat form (100% biodiesel, also know as B100) and in blends with petroleum diesel. European biodiesel is made predominantly from rapeseed oil (a cousin of canola oil).

Author(s):
Sheehan, J.