Skip to main content

KDF Search Results

Displaying 21 - 40 of 137

Published in Bioenergy and Land Use Change (pp. 141–153). John Wiley & Sons, Inc.

Organization:
DOE
Author(s):
Nagendra Singh , Keith L. Kline , Rebecca A. Efroymson , Budhendra Bhaduri , Bridget O'Banion
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

To date, feedstock resource assessments have evaluated cellulosic and algal feedstocks independently, without consideration of demands for, and resource allocation to, each other. We assess potential land competition between algal and terrestrial feedstocks in the United States, and evaluate a scenario in which 41.5 × 109 L yr−1 of second-generation biofuels are produced on pastureland, the most likely land base where both feedstock types may be deployed.

Organization:
DOE
Author(s):
Langholtz, M. , A. M. Coleman , L.M. Eaton , M. S. Wigmosta , Chad Hellwinckel , Craig C. Brandt
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

We propose a causal analysis framework to increase understanding of land-use change (LUC) and the reliability of LUC models. This health-sciences-inspired framework can be applied to determine probable causes of LUC in the context of bioenergy. Calculations of net greenhouse gas (GHG) emissions for LUC associated with biofuel production are critical in determining whether a fuel qualifies as a biofuel or advanced biofuel category under regional (EU), national (US, UK), and state (California) regulations.

Organization:
DOE
Author(s):
Efroymson RA , Kline KL , Angelsen A , Verburg PH , Dale VH , Langeveld JWA , McBride A
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Understanding the complex interactions among food security, bioenergy sustainability, and resource management requires a focus on specific contextual problems and opportunities. The United Nations’ 2030 Sustainable Development Goals place a high priority on food and energy security; bioenergy plays an important role in achieving both goals.

Organization:
DOE
Author(s):
Kline KL , Msangi S , Dale VH , Woods J , Souza G , Osseweijer P , Clancy J , Hilbert J , Mugera H , McDonnell P , Johnson F
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Production of bioenergy from cellulosic sources is likely to increase due to mandates, tax incentives, and subsidies. However, unchecked growth in the bioenergy industry has the potential to adversely influence land use, biodiversity, greenhouse gas (GHG) emissions, and water resources. It may have unintended environmental and socioeconomic consequences. Against this backdrop, it is important to develop standards and protocols that ensure sustainable bioenergy production, promote the benefits of biofuels, and avoid or minimize potential adverse outcomes.

Author(s):
Pralhad Burli , Pankaj Lal , Bernabas Wolde , Janaki Alavalapati

With the shift from petroleum-based to biomass-based economies, global biomass demand and trade is growing. This trend could become a threat to food security. Though rising concerns about sustainability aspects have led to the development of voluntary certification standards to ensure that biomass is sustainably produced, food security aspects are hardly addressed as practical criteria and indicators lack.

Author(s):
Anna Mohr , Tina Beuchelt , Rafaël Schneider , Detlef Virchow

Bioeconomy has gained political momentum since 2012 when the European Commission adopted the strategy “Innovating for Sustainable Growth: A Bioeconomy for Europe”. Assessing the environmental performance of different bioeconomy value chains (divided in three pillars: food and feed, bio-based products and bioenergy) is key to facilitate solid and evidence-based policy making.

Author(s):
Jorge Cristóbal , Cristina T. Matos , Jean-Philippe Aurambout , Simone Manfredi , Boyan Kavalov

Goal: Enable long- term supply of sustainable feedstock & bioenergy – Identify key indicators of how bioenergy production affects environmental, social & economic sustainability – Determine how those effects can be quantified – Demonstrate quantitative approach to assessment of progress toward sustainability in case studies

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Poorly developed biofuels pose severe environmental risks. Procurement officials and risk managers should use only the most stringent and protective certification standards available. Yet assessing how different certification systems rank across the product life cycle is a complex undertaking. That is why NRDC evaluated the performances of several of the major sustainability systems.

Author(s):
Debbie Hammel

This document was prepared to help address these questions by proposing guidelines that define a suite of voluntary biofuel sustainability performance indicators and can be used to inform best-value procurement decisions. These guidelines propose a sustainability framework composed of pillars, criteria, and indicators of protective performance reflective of the relevant U.S.

The aviation industry has committed to hold its carbon emissions steady after 2020 and cut net carbon emissions to half of the 2005 level by 2050. Achieving these goals will require low-carbon fuels, and aviation must drive technology and policy advances to build an aviation biofuel industry with sustainability in the foreground. In order to ensure that aviation biofuels deliver on their promise of long-term sustainability, aviation must leverage its market power and commit to robust sustainability standards in biofuel sourcing.

Author(s):
Debbie Hammel

There is a strong interest in the EU to promote the bioeconomy sector within the EU 2020 strategy. It is thus necessary to assure a sound sustainability framework. This paper reviews international and European sustainability initiatives mainly for biomass for bioenergy. The basic and advanced sustainability indicators are identified and described with particular attention to those points without agreement between stakeholders. Based on the state of the discussion, some suggestions to enhance the sustainable development of the bioeconomy sector are proposed.

Author(s):
Uwe R. Fritsche , Leire Iriarte

The first objective of this paper was to provide an inventory of developments of certification schemes for sustainable biomass production, following recent EU legislation (both formalized and under development). One main pillar is the EU Timber Regulation for legal harvesting; a second one is the EU’s 2010 recommendations for sustainable woody biomass sourcing for energy; the third one is the EU Waste Directive.

Author(s):
Richard Sikkema , Martin Junginger , Jinke van Dam , Gerben Stegeman , David Durrant , Andre Faaij

INTRODUCTION The U.S. Congress passed the Renewable Fuels Standard (RFS) seven years ago. Since then, biofuels have gone from darling to scapegoat for many environmentalists, policy makers, and the general public. The reasons for this shift are complex and include concerns about environmental degradation, uncertainties about impact on food security, new access to fossil fuels, and overly optimistic timetables. As a result, many people have written off biofuels.

Author(s):
Bruce E. Dale , James E. Anderson , Robert C. Brown , Steven Csonka , Virginia H. Dale , Gary Herwick , Randall D. Jackson , Nicholas Jordan , Stephen Kaffka , Keith L. Kline
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Background: The purpose of the article is to research and analyze the notion of sustainability criteria in their function of an emerging tool to promote and safeguard sustainable products and their sustainable production. The article addresses critical issues, which are important for deeper understanding of sustainability criteria and their practical use.

Author(s):
Evgenia Pavlovskaia

Excess nutrients from agriculture in the Mississippi River drainage, USA have degraded water quality in
freshwaters and contributed to anoxic conditions in downstream estuaries. Consequently, water quality is a
significant concern associated with conversion of lands to bioenergy production. This study focused on the
Arkansas-White-Red river basin (AWR), one of five major river basins draining to the Mississippi River. The
AWR has a strong precipitation gradient from east to west, and advanced cellulosic feedstocks are projected to

Author(s):
Henriette I. Jager , Latha M. Baskaran   , Peter E. Schweizer   , Anthony F. Turhollow   , Craig C. Brandt  , Raghavan Srinivasan
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Understanding the environmental effects of alternative fuel production is critical to characterizing the sustainability of energy resources to inform policy and regulatory decisions. The magnitudes of these environmental effects vary according to the intensity and scale of fuel production along each step of the supply chain. We compare the spatial extent and temporal duration of ethanol and gasoline production processes and environmental effects based on a literature review and then synthesize the scale differences on space-time diagrams.

Organization:
DOE
Author(s):
Parish ES , Kline KL , Dale VH , Efroymson RA , McBride AC , Johnson TL , Hilliard MR , Bielicki JM
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This paper presents a generic approach for selecting sustainability criteria and indicators (C&I) by using a participatory methodology. Selecting appropriate C&I to assess the sustainability of projects or developments is crucial and significantly influences the assessment results. The methodology, which consists of two processes: a pre-selection of suitable C&I by the researchers and a final selection by regional bioenergy experts in a multi-stakeholder forum, was applied in a Scottish region (Tayside & Fife).

Author(s):
Thomas Kurka , David Blackwood

The major challenges for humanity include energy security, food security, climate change, and a growing world population. They are all linked together by an instinctive, and yet increasingly complex and evolving concept, that of sustainability. Industrial biotechnology is seen as part of the overall solution, principally to combat climate change and strengthen energy security. At its beating heart is a huge policy challenge – the sustainability of biomass.

Author(s):
Krishna C. Pavanan , Roeland A. Bosch , Rob Cornelissen , Jim C. Philp

This study analyses and compares all standards and certification schemes for biofuels production that were approved to comply with the EU RED requirements. The study compared all of the EU-recognized schemes for certifying the sustainability of biofuels which had been established as of June, 2013. Measuring these 13 standards and certification schemes against WWF’s sustainability criteria revealed each standard’s overall added sustainability value and identified areas for improvement.