Skip to main content

KDF Search Results

Displaying 1 - 16 of 16

Link to the website with documentation and download instructions for the PNNL Global Change Assessment Model (GCAM), a community model or long-term, global energy, agriculture, land use, and emissions. BioEnergy production, transformation, and use is an integral part of GCAM modeling and scenarios.

http://jgcri.github.io/gcam-doc/

Author(s):
Marshall Wise
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Water consumption and water quality continue to be key factors affecting environmental sustainability in biofuel production. This review covers the findings from biofuel water analyses published over the past 2 years to underscore the progress made, and to highlight advancements in understanding the interactions among increased production and water demand, water resource availability, and potential changes in water quality. We focus on two key areas: water footprint assessment and watershed modeling.

Organization:
DOE
Author(s):
May Wu , Zhonglong Zhang , Yiwen Chiu
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This project looks at the potential of blending ethanol with natural gasoline to produce Flex-Fuels (ASTM D5798-13a) and high-octane, mid-level ethanol blends. Eight natural gasoline samples were collected from pipeline companies or ethanol producers around the United States.

Author(s):
Teresa L. Alleman
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The objective of this work was to measure knock resistance metrics for ethanol-hydrocarbon blends with a primary focus on development of methods to  measure the heat of vaporization (HOV). Blends of ethanol at 10 to 50 volume percent were prepared with three gasoline blendstocks and a natural gasoline.

Author(s):
Gina M. Chupka
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

High-octane fuels (HOFs) such as mid-level ethanol blends can be leveraged to design vehicles with increased engine efficiency, but producing these fuels at refineries may be subject to energy efficiency penalties.  It has been questioned whether, on a well-to-wheels (WTW) basis, the use of HOFs in the vehicles designed for HOF has net greenhouse gas (GHG) emission benefits.

Author(s):
Jeongwoo Han
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

We present a system dynamics global LUC model intended to examine LUC attributed to biofuel production. The model has major global land system stocks and flows and can be exercised under different food and biofuel demand assumptions. This model provides insights into the drivers and dynamic interactions of LUC, population, dietary choices, and biofuel policy rather than a precise number generator.

The IPCC SRREN report addresses information needs of policymakers, the private sector and civil society on the potential of renewable energy sources for the mitigation of climate change, providing a comprehensive assessment of renewable energy technologies and related policy and financial instruments. The IPCC report was a multinational collaboration and synthesis of peer reviewed information: Reviewed, analyzed, coordinated, and integrated current high quality information.

We assessed the life-cycle energy and greenhouse gas (GHG) emission impacts of the following three soybean-derived fuels by expanding, updating, and using Argonne National Laboratory’s Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model: (1) biodiesel produced from soy oil transesterification, (2) renewable diesel produced from hydrogenation of soy oil by using two processes (renewable diesel I and II), and (3) renewable gasoline produced from catalytic cracking of soy oil.

We assessed current water consumption during liquid fuel production, evaluating major steps of fuel lifecycle for five fuel pathways: bioethanol from corn, bioethanol from cellulosic feedstocks, gasoline from U.S. conventional crude obtained from onshore wells, gasoline from Saudi Arabian crude, and gasoline from Canadian oil sands.

The US is currently the world's largest ethanol producer. An increasing percentage is used as transportation fuel, but debates continue on its costs competitiveness and energy balance. In this study, technological development of ethanol production and resulting cost reductions are investigated by using the experience curve approach, scrutinizing costs of dry grind ethanol production over the timeframe 1980–2005. Cost reductions are differentiated between feedstock (corn) production and industrial (ethanol) processing.

Author(s):
W.G. Hettinga

A dry-grind ethanol from corn process analysis is performed. After defining a complete model of the process, a pinch technology analysis is carried out to optimise energy and water demands. The so-defined base case is then discussed in terms of production costs and process profitability. A detailed sensitivity analysis on the most important process and financial variables is carried out. The possibility to adopt different alternatives for heat and power generation combined to the process is evaluated.

Author(s):
Giada Franceschin

Production costs of bio-ethanol from sugarcane in Brazil have declined continuously over the last three decades. The aims of this study are to determine underlying reasons behind these cost reductions, and to assess whether the experience curve concept can be used to describe the development of feedstock costs and industrial production costs. The analysis was performed using average national costs data, a number of prices (as a proxy for production costs) and data on annual Brazilian production volumes.

Author(s):
J.D. van den Wall Bake

The important key technologies required for the successful biological conversion of lignocellulosic biomass to ethanol have been extensively reviewed. The biological process of ethanol fuel production utilizing lignocellulose as substrate requires: (1) delignification to liberate cellulose and hemicellulose from their complex with lignin, (2) depolymerization of the carbohydrate polymers (cellulose and hemicellulose) to produce free sugars, and (3) fermentation of mixed hexose and pentose sugars to produce ethanol.

Author(s):
Jeewon Lee

The United States shares with many other countries the goal of the United Nations Framework Convention on Climate Change “to achieve . . . stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system.”1 The critical role of new technologies in achieving this goal is underscored by the fact that most anthropogenic greenhouse gases (GHGs) emitted over the next century will come from equipment and infrastructure that has not yet been built.

Author(s):
Marilyn A. Brown

The model is a vehicle fuel-cycle model for transportation systems. The model provides a set of outcomes that would involve feedstock production, biorefinery production, storage and consumer demand as the complete fuel-cycle. The data is internal to the model, but might be adaptive to different biofuels specifications. This model was developed by the Energy Systems Division at Argonne National Laboratory.

Author(s):
Michael Wang
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.