Skip to main content

KDF Search Results

Displaying 1 - 20 of 24

This project looks at the potential of blending ethanol with natural gasoline to produce Flex-Fuels (ASTM D5798-13a) and high-octane, mid-level ethanol blends. Eight natural gasoline samples were collected from pipeline companies or ethanol producers around the United States.

Author(s):
Teresa L. Alleman
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The objective of this work was to measure knock resistance metrics for ethanol-hydrocarbon blends with a primary focus on development of methods to  measure the heat of vaporization (HOV). Blends of ethanol at 10 to 50 volume percent were prepared with three gasoline blendstocks and a natural gasoline.

Author(s):
Gina M. Chupka
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

High-octane fuels (HOFs) such as mid-level ethanol blends can be leveraged to design vehicles with increased engine efficiency, but producing these fuels at refineries may be subject to energy efficiency penalties.  It has been questioned whether, on a well-to-wheels (WTW) basis, the use of HOFs in the vehicles designed for HOF has net greenhouse gas (GHG) emission benefits.

Author(s):
Jeongwoo Han
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Indicators are needed to assess environmental sustainability of bioenergy systems. Effective indicators
will help in the quantification of benefits and costs of bioenergy options and resource uses. We identify
19 measurable indicators for soil quality, water quality and quantity, greenhouse gases, biodiversity, air
quality, and productivity, building on existing knowledge and on national and international programs
that are seeking ways to assess sustainable bioenergy. Together, this suite of indicators is hypothesized

Author(s):
McBride, Allen

Despite recent claims to the contrary, plant-based fuels developed in economically and environmentally sensible ways can contribute significantly to the nation’s— indeed, the world’s—energy security while providing a host of benefits for many people worldwide.

Author(s):
Keith L. Kline , Virginia H. Dale , Russell Lee , Paul Leiby

IN THEIR REPORTS IN THE 29 FEBRUARY ISSUE (“LAND CLEARING AND THE BIOFUEL CARBON debt,” J. Fargione et al., p. 1235, and “Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change,” T. Searchinger et al., p. 1238), the authors do not provide adequate support for their claim that biofuels cause high emissions due to land-use change. The conclusions of both papers depend on the misleading premise that biofuel production causes forests and grasslands to be converted to agriculture.

Author(s):
Keith L. Kline , Virginia H. Dale

Discussions of alternative fuel and propulsion technologies for transportation often overlook the infrastructure required to make these options practical and cost-effective. We estimate ethanol production facility locations and use a linear optimization model to consider the economic costs of distributing various ethanol fuel blends to all metropolitan areas in the United States. Fuel options include corn-based E5 (5% ethanol, 95% gasoline) to E16 from corn and switchgrass, as short-term substitutes for petroleum-based fuel.

Author(s):
William R. Morrow

The U.S. biomass resource can be used several ways that provide domestic, renewable energy to users. Understanding the capacity of the biomass resource, its potential in energy markets, and the most economic utilization of biomass is important in policy development and project selection. This study analyzed the potential for biomass within markets and the competition between them.

Organization:
DOE

The IPCC SRREN report addresses information needs of policymakers, the private sector and civil society on the potential of renewable energy sources for the mitigation of climate change, providing a comprehensive assessment of renewable energy technologies and related policy and financial instruments. The IPCC report was a multinational collaboration and synthesis of peer reviewed information: Reviewed, analyzed, coordinated, and integrated current high quality information.

This paper examines the impact of biofuel expansion on grain utilization and distribution at the state and cropping district level as most of grain producers and handlers are directly influenced by the local changes. We conducted a survey to understand the utilization and flows of corn, ethanol and its co-products, such as dried distillers grains (DDG) in Iowa. Results suggest that the rapidly expanding ethanol industry has a significant impact on corn utilization in Iowa.

Author(s):
Yu, Tun-Hsiang (Edward)

PEATSim (Partial Equilibrium Agricultural Trade Simulation) is a dynamic, partial equilibrium, mathematical-based model that enables users to reach analytical solutions to problems, given a set of parameters, data, and initial
conditions. This theoretical tool developed by ERS incorporates a wide range of domestic and border policies that enables it to estimate the market and trade effects of policy changes on agricultural markets. PEATSim captures

Author(s):
USDA Economic Research Service

Agricultural markets often feature significant transport costs and spatially distributed production and processing which causes spatial imperfect competition. Spatial economics considers the firms’ decisions regarding location and spatial price strategy separately, usually on the demand side, and under restrictive assumptions. Therefore, alternative approaches are needed to explain, e.g., the location of new ethanol plants in the U.S. at peripheral as well as at central locations and the observation of different spatial price strategies in the market.

Author(s):
Graubner, Marten

This paper introduces a spatial bioeconomic model for study of potential cellulosic biomass supply at regional scale. By modeling the profitability of alternative crop production practices, it captures the opportunity cost of replacing current crops by cellulosic biomass crops. The model draws upon biophysical crop input-output coefficients, price and cost data, and spatial transportation costs in the context of profit maximization theory. Yields are simulated using temperature, precipitation and soil quality data with various commercial crops and potential new cellulosic biomass crops.

Author(s):
Egbendewe-Mondzozo, Aklesso

We assessed the life-cycle energy and greenhouse gas (GHG) emission impacts of the following three soybean-derived fuels by expanding, updating, and using Argonne National Laboratory’s Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model: (1) biodiesel produced from soy oil transesterification, (2) renewable diesel produced from hydrogenation of soy oil by using two processes (renewable diesel I and II), and (3) renewable gasoline produced from catalytic cracking of soy oil.

We assessed current water consumption during liquid fuel production, evaluating major steps of fuel lifecycle for five fuel pathways: bioethanol from corn, bioethanol from cellulosic feedstocks, gasoline from U.S. conventional crude obtained from onshore wells, gasoline from Saudi Arabian crude, and gasoline from Canadian oil sands.

One of the major objectives of the current expansion in bioenergy cropping is to reduce global greenhouse gas emissions for environmental benefit. The cultivation of bioenergy and biofuel crops also affects biodiversity more directly, both positively and negatively.

Author(s):
Les G. Firbank

The purpose of this study is to analyse the economical and environmental performance of switchgrass and miscanthus production and supply chains in the European Union (EU25), for the years 2004 and 2030. The environmental performance refers to the greenhouse gas (GHG) emissions, the primary fossil energy use and to the impact on fresh water reserves, soil erosion and biodiversity. Analyses are carried out for regions in five countries.

Author(s):
Edward M.W. Smeets