Skip to main content

KDF Search Results

Displaying 1 - 20 of 60

The goal of this repository is to promote transparency and ease-of-access to the U.S. Department of Energy Bioenergy Technologies Office (BETO) supported public studies involving techno-economic analysis (TEA). As such, this database summarizes the economic and technical parameters associated with the modeled biorefinery processes for the production of biofuels and bioproducts, as presented in a range of published reports and papers.

Organization:
DOE
Author(s):
Christopher Kinchin
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This is a joint report between three national labs, ORNL, INL, and ANL, that describes outcomes from a workshop. The Bioenergy Solutions to Gulf Hypoxia Workshop gathered stakeholders from industry, academia, national laboratories, and U.S. federal agencies to discuss how biomass feedstocks could help decrease nutrient loadings to the Gulf of Mexico (Gulf), a root cause of the large hypoxic zone that forms each summer.

Author(s):
Henriette Jager , Christina Negri , Leslie Ovard , Shyam Nair
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

One approach to assessing progress towards sustainability makes use of multiple indicators spanning the
environmental, social, and economic dimensions of the system being studied. Diverse indicators have different
units of measurement, and normalization is the procedure employed to transform differing indicator
measures onto similar scales or to unit-free measures. Given the inherent complexity entailed in interpreting
information related to multiple indicators, normalization and aggregation of sustainability indicators

Author(s):
N.L. Pollesch , V.H. Dale
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

There is an inextricable link between energy production and food/feed/fiber cultivation with available water resources. Currently in the United States, agriculture represents the largest sector of consumptivewater usemaking up 80.7%of the total. Electricity generation in the U.S. is projected to increase by 24 % in the next two decades and globally, the production of liquid transportation fuels are forecasted to triple over the next 25-years, having significant impacts on the import/export market and global economies.

Author(s):
Brandon C. Moore
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Excess nutrients from agriculture in the Mississippi River drainage, USA have degraded water quality in
freshwaters and contributed to anoxic conditions in downstream estuaries. Consequently, water quality is a
significant concern associated with conversion of lands to bioenergy production. This study focused on the
Arkansas-White-Red river basin (AWR), one of five major river basins draining to the Mississippi River. The
AWR has a strong precipitation gradient from east to west, and advanced cellulosic feedstocks are projected to

Author(s):
Henriette I. Jager , Latha M. Baskaran   , Peter E. Schweizer   , Anthony F. Turhollow   , Craig C. Brandt  , Raghavan Srinivasan
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

In order to aid operations that promote sustainability goals, researchers and stakeholders use sustainability assessments.  Although assessments take various forms, many utilize diverse sets of indicators numbering anywhere from two to over 2000. Indices, composite indicators, or aggregate values are used to simplify high dimensional and complex data sets and to clarify assessment results. Although the choice of aggregation function is a key component in the development of the assessment, there are fewliterature examples to guide appropriate

Author(s):
Nathan Pollesch
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Water sustainability is an integral part of the environmental sustainability. Water use, water quality, and the demand on water resource for bioenergy production can have potential impacts to food, feed, and fiber production and to our social well-being. With the support from United State Department of Energy, Argonne National Laboratory is developing a life cycle water use assessment tool for biofuels production at the national scale with multiple spatial resolutions.

Author(s):
May Wu

This review on research on life cycle carbon accounting examines the complexities in accounting for carbon emissions given the many different ways that wood is used. Recent objectives to increase the use of renewable fuels have raised policy questions, with respect to the sustainability of managing our forests as well as the impacts of how best to use wood from our forests. There has been general support for the benefits of sustainably managing forests for carbon mitigation as expressed by the Intergovernmental Panel on Climate Change in 2007.

Author(s):
Lippke, Bruce

United States is experiencing increasing interests in fermentation and anaerobic digestion processes for the production of biofuels. A simple methodology of spatial biomass assessment is presented in this paper to evaluate biofuel production and support the first decisions about the conversion technology applications. The methodology was applied to evaluate the potential biogas and ethanol production from biomass in California and Washington states. Solid waste databases were filtered to a short list of digestible and fermentable wastes in both states.

Author(s):
U. Zaher

A Workshop for Oak Ridge National Laboratory (ORNL), the US Environmental Protection Agency (EPA), and their collaborators was held on September 10-11, 2009 at ORNL. The informal workshop focused on “Sustainability of Bioenergy Systems: Cradle to Grave.” The topics covered included sustainability issues associated with feedstock production and transport, production of biofuels and by-products, and delivery and consumption by the end users.

Author(s):
Vriginia Dale

We quantify the emergence of biofuel markets and its impact on U.S. and world agriculture for the coming decade using the multi-market, multi-commodity international FAPRI (Food and Agricultural Policy Research Institute) model. The model incorporates the trade-offs between biofuel, feed, and food production and consumption and international feedback effects of the emergence through world commodity prices and trade.

Author(s):
Fabiosa,Jacinto F.

In recent years, considerable concern has been raised about the sustainability of the world's forested ecosystems (FAO, 2003). With deforestation rates in tropical regions estimated to be as high as 12 million hectares per year (FAO, 2003; Houghton, 2003), much of the concern has centered around tropical deforestation. In contrast to these developments in tropical areas, there is evidence that the area of forests in temperate regions is expanding.

Author(s):
Sohngen,Brent

The Center for Sustainability and the Global Environment (SAGE) at the University of Wisconsin has been developing global databases of contemporary and historical agricultural land use and land cover. SAGE has chosen to focus on agriculture because it is clearly the predominant land use activity on the planet today, and provides a vital service?i.e., food?for human societies. SAGE has developed a ?data fusion?

Author(s):
Monfreda, Chad

A working paper review of current approaches to accounting for indirect land-use changes in green house gas balances of biofuels. This report reviews the current effort made worldwide to address this issue. A
description of land-use concepts is first provided (Section 2) followed by a classification of
ILUC sources (Section 3). Then, a discussion on the implications of including ILUC
emissions in the GHG balance of biofuel pathways (Section 4) and a review of methodologies
being developed to quantify indirect land-use change (Section 5) are presented. Section 6

Author(s):
Gnansounou,Edgard

In this paper we investigate the potential production and implications of a global biofuels industry. We develop alternative approaches to the introduction of land as an economic factor input, in value and physical terms, into a computable general equilibrium framework. Both approach allows us to parameterize biomass production in a manner consistent with agro-engineering information on yields and a ?second generation? cellulosic biomass conversion technology.

Author(s):
Gurgel, Angelo

Agricultural activities have dramatically altered our planet?s land surface. To understand the extent and spatial distribution of these changes, we have developed a new global data set of croplands and pastures circa 2000 by combining agricultural inventory data and satellite-derived land cover data. The agricultural inventory data, with much greater spatial detail than previously available, is used to train a land cover classification data set obtained by merging two different satellite-derived products (Boston University?s MODIS-derived land cover product and the GLC2000 data set).

Author(s):
Ramankutty, Navin

The preceding two chapters of this volume have discussed physical and economic data bases for global agriculture and forestry, respectively. These form the foundation for the integrated, global land use data base discussed in this chapter. However, in order to utilize these data for global CGE analysis, it is first necessary to integrate them into a global, general equilibrium data base. This integration is the subject of the present chapter

Author(s):
Huey-Lin Lee

This paper describes the GTAP land use data base designed to support integrated assessments of the potential for greenhouse gas mitigation. It disaggregates land use by agro-ecological zone (AEZ). To do so, it draws upon global land cover data bases, as well as state-of-the-art definition of AEZs from the FAO and IIASA. Agro-ecological zoning segments a parcel of land into smaller units according to agro-ecological characteristics, including: precipitation, temperature, soil type, terrain conditions, etc. Each zone has a similar combination of constraints and potential for land use.

Author(s):
Huey-Lin Lee

Fertilizers used to increase the yield of crops used for food or bio-based products can migrate through the environment and potentially cause adverse environmental impacts. Nitrogen fertilizers have a complex biogeochemical cycle. Through their transformations and partitioning among environmental compartments, they can contribute to eutrophication of surface waters at local and regional scales, groundwater degradation, acid rain, and climate change.

Author(s):
Powers, Susan E.