Skip to main content

KDF Search Results

Displaying 161 - 180 of 714

In order to aid operations that promote sustainability goals, researchers and stakeholders use sustainability assessments.  Although assessments take various forms, many utilize diverse sets of indicators numbering anywhere from two to over 2000. Indices, composite indicators, or aggregate values are used to simplify high dimensional and complex data sets and to clarify assessment results. Although the choice of aggregation function is a key component in the development of the assessment, there are fewliterature examples to guide appropriate

Author(s):
Nathan Pollesch
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

As with all land transformation activities, effects on biodiversity and ecosystem services of producing feedstocks for biofuels are highly variable and context specific.  Advances toward more sustainable biofuel production benefit from a system's perspective, recognizing spatial heterogeneity and scale, landscape-design principles, and addressing the influences of context such as the particular products and their distribution, policy background, stakeholder values, location, temporal influences, and baseline conditions.  Deploying biofuels in a manner to reduce effects on biodiversity

Author(s):
C.A. Joly
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Abstract: Farmgate prices (i.e. price delivered roadside ready for loading and transport) for biomass feedstocks directly infl uence biofuel prices. Using the latest available data, marginal (i.e. price for the last ton) farmgate prices of $51, $63, and $67 dry ton–1 ($2011) are projected as necessary to provide 21 billion gallons of biofuels from about 250 million dry tons of terrestrial feedstocks in 2022 under price-run deterministic, demand-run deterministic, and stochastic simulations, respectively.

Author(s):
Matthew Langholtz , Laurence Eaton , Anthony Turhollow , Michael Hilliard

As U.S. energy policy turns to bioenergy, and second-generation biofuels in particular, to foster energy security and environmental benefits, consideration should be given to the implications of climate risk for the incipient bioenergy industry. As a case-in-point, we review evidence from the 2012 U.S. drought, underscoring the risk of extreme weather events to the agricultural sector in general, and the bioenergy supply chain in particular, including reductions in feedstock production and higher prices for agricultural commodities and biofuels.

Author(s):
Matthew Langholtz

Vimmerstedt, L. J., Bush, B. W., Hsu, D. D., Inman, D. and Peterson, S. O. (2014), Maturation of biomass-to-biofuels conversion technology pathways for rapid expansion of biofuels production: a system dynamics perspective. Biofuels, Bioprod. Bioref.. doi: 10.1002/bbb.1515
 
 
To explore this file download Tableau reader: http://www.tableausoftware.com/products/reader

Author(s):
NREL

Understanding the development of the biofuels industry in the United States is important to policymakers and industry. The Biomass Scenario Model (BSM) is a system dynamics model of the biomass-to-biofuels system that can be used to explore policy effects on biofuels development. Because of the complexity of the model, as well as the wide range of possible future conditions that affect biofuels industry development, we have not developed a single reference case but instead developed a set of specific scenarios that provide various contexts for our analyses.

Author(s):
Inman, D.; Vimmerstedt, L.; Bush, B.; Peterson, S.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

a b s t r a c t
As U.S. energy policy turns to bioenergy, and second-generation biofuels in particular, to
foster energy security and environmental benefits, consideration should be given to the
implications of climate risk for the incipient bioenergy industry. As a case-in-point, we
review evidence from the 2012 U.S. drought, underscoring the risk of extreme weather
events to the agricultural sector in general, and the bioenergy supply chain in particular,
including reductions in feedstock production and higher prices for agricultural

Author(s):
ORNL

Understanding the environmental effects of alternative fuel production is critical to characterizing the sustainability of energy resources to inform policy and regulatory decisions. The magnitudes of these environmental effects vary according to the intensity and scale of fuel production along each step of the supply chain. We compare the spatial extent and temporal duration of ethanol and gasoline production processes and environmental effects based on a literature review and then synthesize the scale differences on space-time diagrams.

Organization:
DOE
Author(s):
Parish ES , Kline KL , Dale VH , Efroymson RA , McBride AC , Johnson TL , Hilliard MR , Bielicki JM
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This paper presents a generic approach for selecting sustainability criteria and indicators (C&I) by using a participatory methodology. Selecting appropriate C&I to assess the sustainability of projects or developments is crucial and significantly influences the assessment results. The methodology, which consists of two processes: a pre-selection of suitable C&I by the researchers and a final selection by regional bioenergy experts in a multi-stakeholder forum, was applied in a Scottish region (Tayside & Fife).

Author(s):
Thomas Kurka , David Blackwood

The major challenges for humanity include energy security, food security, climate change, and a growing world population. They are all linked together by an instinctive, and yet increasingly complex and evolving concept, that of sustainability. Industrial biotechnology is seen as part of the overall solution, principally to combat climate change and strengthen energy security. At its beating heart is a huge policy challenge – the sustainability of biomass.

Author(s):
Krishna C. Pavanan , Roeland A. Bosch , Rob Cornelissen , Jim C. Philp

This study analyses and compares all standards and certification schemes for biofuels production that were approved to comply with the EU RED requirements. The study compared all of the EU-recognized schemes for certifying the sustainability of biofuels which had been established as of June, 2013. Measuring these 13 standards and certification schemes against WWF’s sustainability criteria revealed each standard’s overall added sustainability value and identified areas for improvement.

Indicators of the environmental sustainability of biofuel production, distribution, and use should be selected, measured, and interpreted with respect to the context in which they are used. The context of a sustainability assessment includes the purpose, the particular biofuel production and distribution system, policy conditions, stakeholder values, location, temporal influences, spatial scale, baselines, and reference scenarios.

Author(s):
Rebecca A. Efroymson , Virginia H. Dale , Keith L. Kline , Allen C. McBride , Jeffrey M. Bielicki , Raymond L. Smith , Esther S. Parish , Peter E. Schweizer , Denice M. Shaw
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Eucalyptus is a fast-growing tree native to Australia and could be used to supply biomass for bioenergy and other purposes along the coastal regions of the southeastern United States (USA). At a farmgate price of $66 dry Mg−1, a potential supply of 27 to 41.3 million dry Mg year−1 of Eucalyptus could be produced on about 1.75 million ha in the southeastern USA. A proposed suite of indicators provides a practical and consistent way to measure the sustainability of a particular situation where Eucalyptus might be grown as a feedstock for conversion to bioenergy.

Author(s):
Virginia H. Dale , Matthew H. Langholtz , Beau M. Wesh , Laurence M. Eaton
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Foreword: Governments and the private sector are increasingly aware of the need to pursue sustainability for biomass. Over the past decades many criteria have been drawn up, mandatory or criteria in voluntary standard systems or in public-private agreements. As pressure on the earth’s ecosystems is mounting, putting all these criteria into practice is becoming increasingly urgent. Implementing certified sustainable production is one of the good governance measures needed to attain sustainability in value chains.

As a promising alternative energy source, biofuel imparts a remarkable role for the sustainability and security in energy sector. Strategies, including policy recommendations have been set to put forward the development and implementation of biofuel by different countries. Recent exploitation of Asian biofuels policy is one step towards destination. These types of activity behind the biofuels would be the catalyst for the productiveness of policy set by individual territory like Malaysia, Thailand, Vietnam, etc.

Interest in renewable energy sources derived from plant biomass is increasing, raising concerns about fuel vs. food competition. One strategy to produce additional cellulosic biomass without reducing food-harvest potential is to grow winter cover crops after harvest of the primary summer crop. This study estimated biomass accumulation of a fall-planted winter rye (Secale cereal L.) double crop across the United States on corn (Zea mays L.)–soybean [Glycine max (L.) Merr.] croplands.

Author(s):
Gary W. Feyereisen , Gustavo G. T. Camargo , Ryan E. Baxter , John M. Baker , Tom L. Richard

Continuous measurement of soil NO emissions is needed to constrain NO budget and emission factors. Here, we describe the performance of a low-power Teledyne NO analyzer and automated chamber system, powered by wind and solar, that can continuously measure soil NO emissions. Laboratory testing of the analyzer revealed significant temperature sensitivity, causing zero drift of -10.6 nmol mol °C. However, temperature-induced span drift was negligible, so the associated error in flux measurement for a typical chamber sampling period was on the order of 0.016 nmol m s.

Author(s):
Joel Fassbinder , Natalie M Schultz , John M. Baker , Timothy Griffis

Difficulties in accessing high-quality data on trace gas fluxes and performance of bioenergy/bioproduct feedstocks limit the ability of researchers and others to address environmental impacts of agriculture and the potential to produce feedstocks. To address those needs, the GRACEnet (Greenhouse gas Reduction through Agricultural Carbon Enhancement network) and REAP (Renewable Energy Assessment Project) research programs were initiated by the USDA Agricultural Research Service (ARS).

Author(s):
S. J. Del Grosso , J. W. White , G. Wilson , B. Vandenberg , D. L. Karlen , R. F. Follett , J. M. F. Johnson , A. J. Franzluebbers , D. W. Archer , H. T. Gollany , M. A. Liebig , J. Ascough , M. Reyes-Fox , L. Pellack , J. Starr , N. Barbour , R. W. Polumsky , M. Gutwein , D. James

Cellulosic biofuel production may generate new markets and revenue for farmers. However, residue removal may cause environmental problems such as soil erosion and soil organic matter (SOM) loss. The objective of this study was to determine the amounts of residue necessary for SOM maintenance under different tillage and residue removal scenarios for corn–soybean [Zea mays L.–Glycine max (L.) Merr.] and continuous corn rotations for a site in west-central Minnesota.

Author(s):
Brent J. Dalzell , Jane M. F. Johnson , Joel Tallaksen , Deborah L. Allan , Nancy W. Barbour