Skip to main content

landuse

The aim of this study is to show the impact of different assumptions and methodological choices on the life-cycle greenhouse gas (GHG) performance of biofuels by providing the results for different key parameters on a consistent basis. These include co-products allocation or system expansion, N2O emissions from crop cultivation, conversion systems and co-product applications and direct land-use change emissions. The results show that the GHG performance of biofuels varies depending on the method applied and the system boundaries selected. Key factors include selected allocation procedures and the location of production and related yields, reference land and soil N2O emissions.

Contact Phone
Data Source
Renewable and Sustainable Energy Reviews
Contact Person
Ric Hoefnagels
Bioenergy Category
Author(s)
Ric Hoefnagels

The rapidly expanding biofuel industry has changed the fundamentals of U.S. agricultural commodity markets. Increasing ethanol and biodiesel production has generated a fast-growing demand for corn and soybean products, which competes with the well-established domestic livestock industry and foreign buyers. Meanwhile, the co-products of biofuel production are replacing or displacing coarse grains and oilseed meal in feed rations for livestock. These developments in the agricultural and energy markets change the distribution of domestic grains and feeds and the utilization of shipping modes, which is likely affect the prices and basis of grains and other feedstocks in spatial markets.

Contact Phone
Contact Email
tyu1@utk.edu
Data Source
Southern Agricultural Economics Association Annual Meeting, 2009
Contact Person
Tun-Hsiang (Edward) Yu
Author(s)
Tun-Hsiang (Edward) Yu

Land-use change models are important tools for integrated environmental management. Through scenario analysis they can help to identify near-future critical locations in the face of environmental change. A dynamic, spatially explicit, land-use change model is presented for the regional scale: CLUE-S. The model is specifically developed for the analysis of land use in small regions (e.g., a watershed or province) at a fine spatial resolution. The model structure is based on systems theory to allow the integrated analysis of land-use change in relation to socio-economic and biophysical driving factors. The model explicitly addresses the hierarchical organization of land use systems, spatial connectivity between locations and stability. Stability is incorporated by a set of variables that define the relative elasticity of the actual land-use type to conversion. The user can specify these settings based on expert knowledge or survey data. Two applications of the model in the Philippines and Malaysia are used to illustrate the functioning of the model and its validation.

Publication Date
Contact Email
pverburg@gissrv.iend.wau.nl
Attachment
Contact Person
Verburg,P.H.
Contact Organization
Department of Environmental Sciences,Wageningen University
Bioenergy Category
Author(s)
Verburg,P.H.

Human actions are altering the terrestrial environment at unprecedented rates, magnitudes, and spatial scales. Landcover change stemming from human land uses represents a major source and a major element of global environmental change. Not only are the global-level data on landuse and land-cover change relatively poor, but we need a much better understanding of the underlying driving forces for these changes. Many forces have been proposed as significant, but single-factor explanations of land transformation have proved to be inadequate. How the human causes interact, and under what circumstances each is important, are questions needing systematic research. An international and interdisciplinary agenda is currently being developed to address these issues, through several closelyconnected foci of study. A division of the world according to common situations of environment, human driving forces, and land-cover dynamics will be followed by detailed study of the processes at work within each situation. The results will form the basis for a concurrent effort to develop a global land model that can offer projections of patterns of land transformation.

Publication Date
Attachment
Contact Person
B.L.Turner II
Contact Organization
George Perkins Marsh Institute
Bioenergy Category
Author(s)
Turner,B.L.

This paper presents an overview of multi-agent system models of land-use/cover change (MAS/LUCC models). This special class of LUCC models combines a cellular landscape model with agent-based representations of decisionmaking, integrating the two components through specification of interdependencies and feedbacks between agents and their environment. The authors review alternative LUCC modeling techniques and discuss the ways in which MAS/LUCC models may overcome some important limitations of existing techniques. We briefly review ongoing MAS/LUCC modeling efforts in four research areas. We discuss the potential strengths of MAS/LUCC models and suggest that these strengths guide researchers in assessing the appropriate choice of model for their particular research question. We find that MAS/LUCC models are particularly well suited for representing complex spatial interactions under heterogeneous conditions and for modeling decentralized, autonomous decision making. We discuss a range of possible roles for MAS/LUCC models, from abstract models designed to derive stylized hypotheses to empirically detailed simulation models appropriate for scenario and policy analysis. We also discuss the challenge of validation and verification for MAS/LUCC models. Finally, we outline important challenges and open research questions in this new field. We conclude that, while significant challenges exist, these models offer a promising new tool for researchers whose goal is to create fine-scale models of LUCC phenomena that focus on human-environment interactions.

Contact Phone
Publication Date
Contact Email
dawparke@indiana.edu
Contact Person
Dawn C. Parker
Contact Organization
Indiana University
Bioenergy Category
Author(s)
Parker, Dawn C.

This study presents the results of comparing land use estimates between three different data sets for the Upper Mississippi River Basin (UMRB). The comparisons were performed between the U.S. Department of Agriculture (USDA) Natural Resource Conservation Service (NRCS) National Resource Inventory (NRI), the U.S. Geological Survey (USGS) National Land Cover Data (NLCD) database, and a combined USDA National Agricultural Statistics Service (NASS) Agricultural Census – NLCD dataset created to support applications of the Hydrologic Unit Model for the U.S. (HUMUS). The comparison was performed for 1992 versions of the datasets because that was the only consistent year available among all three data sources. The results show that differences in land use area estimates increased as comparisons shifted from the entire UMRB to smaller 4- and 8-digit watershed regions (as expected). However, the area estimates for the major land use categories remained generally consistent among all three data sets across each level of spatial comparison. Differences in specific crop and grass/forage land use categories were magnified with increasing refinement of the spatial unit of comparison, especially for close-grown crops, pasture, and alfalfa/hayland.

Contact Phone
Publication Date
Contact Email
pwgassma@iastate.edu
Contact Person
Philip Gassman
Contact Organization
Center for Agricultural and Rural Development
Bioenergy Category
Author(s)
Santhi, Chinnisamy

Biofuels from land-rich tropical countries may help displace foreign petroleum imports for many industrialized nations, providing a possible solution to the twin challenges of energy security and climate change. But concern is mounting that crop-based biofuels will increase net greenhouse gas emissions if feedstocks are produced by expanding agricultural lands. Here we quantify the ?carbon payback time? for a range of biofuel crop expansion pathways in the tropics. We use a new, geographically detailed database of crop locations and yields, along with updated vegetation and soil biomass estimates, to provide carbon payback estimates that are more regionally specific than those in previous studies. Using this cropland database, we also estimate carbon payback times under different scenarios of future crop yields, biofuel technologies, and petroleum sources. Under current conditions, the expansion of biofuels into productive tropical ecosystems will always lead to net carbon emissions for decades to centuries, while expanding into degraded or already cultivated land will provide almost immediate carbon savings. Future crop yield improvements and technology advances, coupled with unconventional petroleum supplies, will increase biofuel carbon offsets, but clearing carbon-rich land still requires several decades or more for carbon payback. No foreseeable changes in agricultural or energy technology will be able to achieve meaningful carbon benefits if crop-based biofuels are produced at the expense of tropical forests.

Contact Phone
Keywords
Publication Date
Contact Email
hkgibbs@wisc.edu
Contact Person
Holly K Gibbs
Contact Organization
SAGE
Bioenergy Category
Author(s)
Gibbs, H.K.

The Center for Sustainability and the Global Environment (SAGE) at the University of Wisconsin has been developing global databases of contemporary and historical agricultural land use and land cover. SAGE has chosen to focus on agriculture because it is clearly the predominant land use activity on the planet today, and provides a vital service?i.e., food?for human societies. SAGE has developed a ?data fusion? technique to integrate remotely-sensed data on the world?s land cover with administrative-unit-level inventory data on land use (Ramankutty and Foley, 1998; Ramankutty and Foley, 1999; Ramankutty et al., in press). The advent of remote sensing data has been revolutionary in providing consistent, global, estimates of the patterns of global land cover. However, remote sensing data are limited in their ability to resolve the details of agricultural land cover from space. Therein lies the strength of the ground-based inventory data, which provide detailed estimates of agricultural land use practices. However, inventory data are limited in not being spatially explicit, and these data are also plagued by problems of inconsistency across administrative units. The ?data fusion? technique developed by SAGE exploits the strengths of both the remotely-sensed data as well as the inventory data.

Publication Date
Contact Person
Chad Monfreda
Contact Organization
SAGE
Bioenergy Category
Author(s)
Monfreda, Chad

Land use change models are tools to support the analysis of the causes and consequences of land use dynamics. Scenario analysis with land use models can support land use planning and policy. Numerous land use models are available, developed from different disciplinary backgrounds. This paper reviews current models to identify priority issues for future land use change modelling research. This discussion is based on six concepts important to land use modelling: (1) Level of analysis; (2) Cross-scale dynamics; (3) Driving forces; (4) Spatial interaction and neighbourhood effects; (5) Temporal dynamics; and (6) Level of integration. For each of these concepts an overview is given of the variety of methods used to implement these concepts in operational models. It is concluded that a lot of progress has been made in building land use change models. However, in order to incorporate more aspects important to land use modelling it is needed to develop a new generation of land use models that better address the multi-scale characteristics of the land use system, implement new techniques to quantify neighbourhood effects, explicitly deal with temporal dynamics and achieve a higher level of integration between disciplinary approaches and between models studying urban and rural land use changes. If these requirements are fulfilled models will better support the analysis of land use dynamics and land use policy formulation.

Keywords
Publication Date
Contact Email
peter.verburg@wur.nl
Contact Person
Peter H. Verburg
Contact Organization
Wageningen University
Bioenergy Category
Author(s)
Verburg, Peter H.

Land use has generally been considered a local environmental issue, but it is becoming a force of global importance. Worldwide changes to forests, farmlands, waterways, and air are being driven by the need to provide food, fiber, water, and shelter to more than six billion people. Global croplands, pastures, plantations, and urban areas have expanded in recent decades, accompanied by large increases in energy, water, and fertilizer consumption, along with considerable losses of biodiversity. Such changes in land use have enabled humans to appropriate an increasing share of the planet?s resources, but they also potentially undermine the capacity of ecosystems to sustain food production, maintain freshwater and forest resources, regulate climate and air quality, and ameliorate infectious diseases. We face the challenge of managing trade-offs between immediate human needs and maintaining the capacity of the biosphere to provide goods and services in the long term.

Contact Email
jfoley@wisc.edu
Contact Person
Jonathan A. Foley
Bioenergy Category
Author(s)
Foley, Jonathan A.
Subscribe to landuse