Skip to main content

KDF Search Results

Displaying 141 - 160 of 714

Harvesting crop residues for bioenergy or bio-product production may decrease soil organic matter (SOM) content, resulting in the degradation of soil physical properties and ultimately soil productivity. Using the least limiting water range (LLWR) to evaluate improvement or degradation of soil physical properties in response to SOM changes has generally been hampered by the extensive amount of data needed to parameterize limiting factor models for crop production.

Author(s):
Joseph G. Benjamin , Douglas L. Karlen

Corn stover removal, whether for silage, bedding, or bioenergy production, could have a variety of environmental consequences through its effect on soil processes, particularly N2O production and soil respiration. Because these effects may be episodic in nature, weekly snapshots with static chambers may not provide a complete picture.

Author(s):
John M. Baker , Joel Fassbinder , John A. Lamb

Rigorous economic analyses are crucial for the successful launch of lignocellulosic bioenergy facilities in 2014 and beyond. Our objectives are to (1) introduce readers to a query tool developed to use data downloaded from the Agricultural Research Service (ARS) REAPnet for constructing enterprise budgets and (2) demonstrate the use of the query tool with REAPnet data from two field research sites (Ames, IA, and Mandan, ND) for evaluating short-term economic performance of various biofuel feedstock production strategies.

Author(s):
David W. Archer , Douglas L. Karlen , Mark A. Liebig

Potential global biodiversity impacts from near-term gasoline production are compared to
biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term
(i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more
than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in
remote, fragile terrestrial ecosystems or off-shore oil fi elds that would remain relatively undisturbed

Author(s):
Dale VH , Parish ES , Kline KL

The following reports, papers, and websites relate to Intermediate Ethanol Blend Studies supported or partially supported by the Department of Energy since 2007; also listed are relevant industry-funded materials studies and relevant EPA and Coordinating Research Council websites. Numerous oral presentations were given throughout the program; these are not listed, however those given at DOE Annual Merit Reviews are included here.

Water consumption and water quality continue to be key factors affecting environmental sustainability in biofuel production. This review covers the findings from biofuel water analyses published over the past 2 years to underscore the progress made, and to highlight advancements in understanding the interactions among increased production and water demand, water resource availability, and potential changes in water quality. We focus on two key areas: water footprint assessment and watershed modeling.

Organization:
DOE
Author(s):
May Wu , Zhonglong Zhang , Yiwen Chiu
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This project looks at the potential of blending ethanol with natural gasoline to produce Flex-Fuels (ASTM D5798-13a) and high-octane, mid-level ethanol blends. Eight natural gasoline samples were collected from pipeline companies or ethanol producers around the United States.

Author(s):
Teresa L. Alleman
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The objective of this work was to measure knock resistance metrics for ethanol-hydrocarbon blends with a primary focus on development of methods to  measure the heat of vaporization (HOV). Blends of ethanol at 10 to 50 volume percent were prepared with three gasoline blendstocks and a natural gasoline.

Author(s):
Gina M. Chupka
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

High-octane fuels (HOFs) such as mid-level ethanol blends can be leveraged to design vehicles with increased engine efficiency, but producing these fuels at refineries may be subject to energy efficiency penalties.  It has been questioned whether, on a well-to-wheels (WTW) basis, the use of HOFs in the vehicles designed for HOF has net greenhouse gas (GHG) emission benefits.

Author(s):
Jeongwoo Han
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This report evaluates infrastructure implications for a high-octane fuel, i.e., a blend of 25% denatured ethanol and 75% gasoline (E25) or higher (E25+), for use with a new high-efficiency type of vehicle. E25+ is under consideration due to federal regulations requiring the use of more renewable fuels and improvements in fuel economy. The existing transportation fuel infrastructure may not be completely compatible with a mid-level ethanol blend (blends above E15 up to E50).

Author(s):
K. Moriarty , M. Kass , T. Theiss

The compatibility of plastic materials used in fuel storage and dispensing applications was determined for an off-highway diesel fuel
and a blend containing 20% bio-oil (Bio20) derived from a fast pyrolysis process. Bio20 is not to be confused with B20, which is a
diesel blend containing 20% biodiesel. The feedstock, processing, and chemistry of biodiesel are markedly different from bio-oil.
Plastic materials included those identified for use as seals, coatings, piping and fiberglass resins, but many are also used in vehicle

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The compatibility of plastic materials used in fuel storage and dispensing applications was determined for a test fuel representing
gasoline blended with 10% ethanol. Prior investigations were performed on gasoline fuels containing 25, 50 and 85% ethanol, but the
knowledge gap existing from 0 to 25% ethanol precluded accurate compatibility assessment of low level blends, especially for the
current E10 fuel (gasoline containing 10% ethanol) used in most filling stations, and the recently accepted E15 fuel blend (gasoline
blended with up to15% ethanol).

Author(s):
Michael Kass
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The compatibility of elastomer materials used in fuel storage and dispensing applications was determined for an off-highway diesel
fuel and a blend containing 20% bio-oil (Bio20) derived from a fast pyrolysis process. (This fuel blend is not to be confused with B20,
which is a blend of diesel fuel with 20% biodiesel.) The elastomer types evaluated in this study included fluorocarbon, fluorosilicone,
acrylonitrile rubber (NBR), styrene butadiene rubber (SBR), polyurethane, neoprene, and silicone. All of these elastomer types are

Author(s):
Michael Kass
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Excess nutrients from agriculture in the Mississippi River drainage, USA have degraded water quality in
freshwaters and contributed to anoxic conditions in downstream estuaries. Consequently, water quality is a
significant concern associated with conversion of lands to bioenergy production. This study focused on the
Arkansas-White-Red river basin (AWR), one of five major river basins draining to the Mississippi River. The
AWR has a strong precipitation gradient from east to west, and advanced cellulosic feedstocks are projected to

Author(s):
Henriette I. Jager , Latha M. Baskaran   , Peter E. Schweizer   , Anthony F. Turhollow   , Craig C. Brandt  , Raghavan Srinivasan
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Understanding how large-scale bioenergy production can affect biodiversity and ecosystems is important if society is to meet current and future sustainable development goals. A variety of bioenergy production systems have been established within different contexts throughout the Pan American region, with wide-ranging results in terms of documented and projected effects on biodiversity and ecosystems.

A framework for selecting and evaluating indicators of bioenergy sustainability is presented.
This framework is designed to facilitate decision-making about which indicators are useful for assessing
sustainability of bioenergy systems and supporting their deployment. Efforts to develop sustainability
indicators in the United States and Europe are reviewed. The fi rst steps of the framework for
indicator selection are defi ning the sustainability goals and other goals for a bioenergy project or program,

Author(s):
Virginia Dale
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

For analyzing sustainability of algal biofuels, we identify 16 environmental indicators that fall into six categories: soil quality, water quality and quantity, air quality, greenhouse gas emissions, biodiversity, and productivity. Indicators are selected to be practical, widely applicable, predictable in response, anticipatory of future changes, independent of scale, and responsive to management.

Author(s):
R. A. Efroymson
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Agroecosystem models that can incorporate management practices and quantify environmental effects
are necessary to assess sustainability-associated food and bioenergy production across spatial scales.
However, most agroecosystem models are designed for a plot scale. Tremendous computational capacity
on simulations and datasets is needed when large scales of high-resolution spatial simulations are conducted.
We used the message passing interface (MPI) parallel technique and developed a master–slave

Author(s):
S. Kang