Skip to main content

nitrous oxide

In-field measurements of direct soil greenhouse gas (GHG) emissions provide critical data for quantifying the net energy efficiency and economic feasibility of crop residue-based bioenergy production systems. A major challenge to such assessments has been the paucity of field studies addressing the effects of crop residue removal and associated best practices for soil management (i.e., conservation tillage) on soil emissions of carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4). This regional survey summarizes soil GHG emissions from nine maize production systems evaluating different levels of corn stover removal under conventional or conservation tillage management across the US Corn Belt. Cumulative growing season soil emissions of CO2, N2O, and/or CH4 were measured for 2–5 years (2008–2012) at these various sites using a standardized static vented chamber technique as part of the USDA-ARS’s Resilient Economic Agricultural Practices (REAP) regional partnership. Cumulative soil GHG emissions during the growing season varied widely across sites, by management, and by year. Overall, corn stover removal decreased soil total CO2 and N2O emissions by -4 and -7 %, respectively, relative to no removal. No management treatments affected soil CH4 fluxes. When aggregated to total GHG emissions (Mg CO2 eq ha−1) across all sites and years, corn stover removal decreased growing season soil emissions by −5 ± 1 % (mean ± se) and ranged from -36 % to 54 % (n = 50). Lower GHG emissions in stover removal treatments were attributed to decreased C and N inputs into soils, as well as possible microclimatic differences associated with changes in soil cover. High levels of spatial and temporal variabilities in direct GHG emissions highlighted the importance of site-specific management and environmental conditions on the dynamics of GHG emissions from agricultural soils.

Publication Date
Virginia L. Jin , John M. Baker , Jane M.-F. Johnson , Douglas L. Karlen , R. Michael Lehman , Shannon L. Osborne , Thomas J. Sauer , Diane E. Stott , Gary E. Varvel , Rodney T. Venterea , Marty R. Schmer , Brian J. Wienhold

Crop intensification is often thought to increase greenhouse gas (GHG) emissions, but studies in which crop management is optimized to exploit crop yield potential are rare. We conducted a field study in eastern Nebraska, USA to quantify GHG emissions, changes in soil organic carbon (SOC) and the net global warming potential (GWP) in four irrigated systems: continuous maize with recommended best management practices (CC-rec) or intensive management (CC-int) and maize–soybean rotation with recommended (CS-rec) or intensive management (CS-int). Grain yields of maize and soybean were generally within 80–100% of the estimated site yield potential. Large soil surface carbon dioxide (CO2) fluxes were mostly associated with rapid crop growth, high temperature and high soil water content. Within each crop rotation, soil CO2 efflux under intensive management was not consistently higher than with recommended management. Owing to differences in residue inputs, SOC increased in the two continuous maize systems, but decreased in CS-rec or remained unchanged in CS-int. N2O emission peaks were mainly associated with high temperature and high soil water content resulting from rainfall or irrigation events, but less clearly related to soil NO3-N levels. N2O fluxes in intensively managed systems were only occasionally greater than those measured in the CC-rec and CS-rec systems. Fertilizer-induced N2O emissions ranged from 1.9% to 3.5% in 2003, from 0.8% to 1.5% in 2004 and from 0.4% to 0.5% in 2005, with no consistent differences among the four systems. All four cropping systems where net sources of GHG. However, due to increased soil C sequestration continuous maize systems had lower GWP than maize–soybean systems and intensive management did not cause a significant increase in GWP. Converting maize grain to ethanol in the two continuous maize systems resulted in a net reduction in life cycle GHG emissions of maize ethanol relative to petrol-based gasoline by 33–38%. Our study provided evidence that net GHG emissions from agricultural systems can be kept low when management is optimized toward better exploitation of the yield potential. Major components for this included (i) choosing the right combination of adopted varieties, planting date and plant population to maximize crop biomass productivity, (ii) tactical water and nitrogen (N) management decisions that contributed to high N use efficiency and avoided extreme N2O emissions, and (iii) a deep tillage and residue management approach that favored the build-up of soil organic matter from large amounts of crop residues returned.

Bioenergy Category
Subscribe to nitrous oxide