Skip to main content

KDF Search Results

Displaying 1 - 20 of 34

The U.S. Department of Energy Bioenergy Technology Office's (BETO's) 2023 Billion-Ton Report (BT23) is an assessment of renewable carbon resources potentially available in the United States. BT23 explores these resources in terms of quantity, price, geographical density and distribution, and market maturity. Resource quantities in this report are limited by specified economic and environmental sustainability constraints. Good practices are needed to ensure biomass production has positive environmental outcomes.

Organization:
DOE
Author(s):
Matthew H Langholtz

This dataset includes ForSEAM and BioSUM model output prepared for BT23 Chapter 4, as well as USDA-FS Forest Inventory Analysis datasets used to calculate waste biomass from the forested land base. Please access the data through the BT23 Data Portal or directly at https://bioenergykdf.ornl.gov/bt23-forestry-download

Organization:
DOE
Author(s):
Maggie Davis , Lixia Lambert , Ryan Jacobson , Consuelo Brandeis , Jeremy Fried , Burton English

This dataset includes longitudinal measurements of water quality in four streams and rivers across the United States that were collected using the AquaBOT, an unmanned surface vehicle equipped with water quality sensors developed as part of a BETO-funded project ('Spatially resolved measurements of water quality indicators within a bioenergy landscape'). Measured water quality indicators include: nitrate concentration, temperature, specific conductivity, dissolved oxygen, turbidity, chlorophyll, and pH.

Organization:
DOE
Author(s):
Natalie A. Griffiths, Peter S. Levi, Jeffery S. Riggs, Christopher R. DeRolph, Allison M. Fortner, Jason K. Richards

Simulations under this dataset were targeted to a specific fuelshed in Iowa.
Integrated land management (ILM) applications were targeted under this research, although the results of these simulations are at the county level; downscaling post-processing will be applied.

Organization:
DOE
Author(s):
Maggie R. Davis
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Contact information about the submitter of this metadata record:
Author list: Maggie Davis, Matt Langholtz, Laurence Eaton, Chad Hellwinkel
Who should be contacted with questions relating to the data? (Principal investigator or primary developer of data product): Maggie Davis, davismr@ornl.gov

Organization:
DOE
Author(s):
Maggie Davis , Matt Langholtz , Laurence Eaton , Chad Hellwinkel
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Perennial grasses are touted as sustainable feedstocks for energy production. Such benefits, however, may be offset if excessive nitrogen (N) fertilization leads to economic and environmental issues. Furthermore, as yields respond to changes in climate, nutrient requirements will change, and thus guidance on minimal N inputs is necessary to ensure sustainable bioenergy production.

Organization:
DOE
Author(s):
Huaihai Chen , Zhongmin Dai , Henriette I. Jager , Stan D. Wullschleger , Jianming Xu , Christopher W. Schadt
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Sustainable production of algae will depend on understanding trade-offs at the energy-water nexus. Algal biofuels promise to improve the environmental sustainability profile of renewable energy along most dimensions. In this assessment of potential US freshwater production, we assumed sustainable production along the carbon dimension by simulating placement of open ponds away from high-carbon-stock lands (forest, grassland, and wetland) and near sources of waste CO 2 .

Organization:
DOE
Author(s):
Henriette I. Jager , Rebecca A. Efroymson , Latha M. Baskaran
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Practicing agriculture decreases downstream water quality when compared to non-agricultural lands. Agricultural watersheds that also grow perennial biofuel feedstocks can be designed to improve water quality compared to agricultural watersheds without perennials. The question then becomes which conservation practices should be employed and where in the landscape should they be situated to achieve water quality objectives when growing biofuel feedstocks.

Organization:
DOE
Author(s):
Jasmine A.F. Kreig , Herbert Ssegane , Indrajeet Chaubey , Maria C. Negri , Henriette I. Jager
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Logging and mill residues are currently the largest sources of woody biomass for bioenergy in the US, but short-rotation woody crops (SRWCs) are expected to become a larger contributor to biomass production, primarily on lands marginal for food production. However, there are very few studies on the environmental effects of SRWCs, and most have been conducted at stand rather than at watershed scales.

Organization:
DOE
Author(s):
Natalie A. Griffiths , Benjamin M. Rau , Kellie B. Vache , Gregory Starr , Menberu M. Bitew , Doug P. Aubrey , James A. Martin , Elizabeth Benton , C. Rhett Jackson
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The objective of this research project was to assess whether standard forestry best management practices (BMPs) are sufficient to protect stream water quality from intensive silviculture associated with short-rotation woody crop (SRWC) production for bioenergy. Forestry BMPs are designed to prevent the movement of deleterious quantities of nutrients, herbicides, sediments, and thermal energy (sunlight hitting stream channels) from clear-cuts and plantations to surface waters.

Organization:
DOE
Author(s):
Natalie A. Griffiths , C. Rhett Jackson , John I. Blake , Johnson Jeffers , Benjamin M. Rau , Gregory Starr , Kellie Vache
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Advanced biomass feedstocks tend to provide more non-fuel ecosystem goods and services (ES) than 1st-generation alternatives. We explore the idea that payment for non-fuel ES could facilitate market penetration of advanced biofuels by closing the profitability gap. As a specific example, we discuss the Mississippi-Atchafalaya River Basin (MARB), where 1st-generation bioenergy feedstocks (e.g., corn-grain) have been integrated into the agricultural landscape.

Organization:
DOE
Author(s):
Jager, Henriette I , Efroymson, Rebecca A.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This workshop examines the potential benefits, feasibility, and barriers to the use of biofuels in place of heavy fuel oil (HFO) and marine gas oil for marine vessels. More than 90% of world’s shipped goods
travel by marine cargo vessels powered by internal combustion (diesel) engines using primarily low-cost residual HFO, which is high in sulfur content. Recognizing that marine shipping is the largest source of

Organization:
DOE
Author(s):
Mike Kass , Zia Abdullah , Mary Biddy , Corinne Drennan , Troy Hawkins , Susanne Jones , Johnathan Holladay , Dough Longman , Emily Newes , Tim Theiss , Tom Thompson , Michael Wang
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This is a joint report between three national labs, ORNL, INL, and ANL, that describes outcomes from a workshop. The Bioenergy Solutions to Gulf Hypoxia Workshop gathered stakeholders from industry, academia, national laboratories, and U.S. federal agencies to discuss how biomass feedstocks could help decrease nutrient loadings to the Gulf of Mexico (Gulf), a root cause of the large hypoxic zone that forms each summer.

Author(s):
Henriette Jager , Christina Negri , Leslie Ovard , Shyam Nair
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Reducing dependence on fossil‐based energy has raised interest in biofuels as a potential energy source, but concerns have been raised about potential implications for water quality. These effects may vary regionally depending on the biomass feedstocks and changes in land management. Here, we focused on the Tennessee River Basin (TRB), USA.

Organization:
DOE
Author(s):
Wang, Gangsheng , Jager, Henriette
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Highlights
• Opportunities to improve coproduction of wildlife and biomass-for-energy exist at multiple spatial scales.

• At the landscape scale, we review strategies for increasing biodiversity in biomass production systems, drawing examples from plantations, dedicated perennial grasses, and forest thinning systems in the Americas.

• At the scale of one land owner, we describe wildlife-friendly practices to promote land sharing for each production system.

Organization:
DOE
Author(s):
Jager, Henriette I , Kreig, Jasmine
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.